×

Obtaining highly excited eigenstates of the localized XX chain via DMRG-X. (English) Zbl 1404.82010

Summary: We benchmark a variant of the recently introduced density matrix renormalization group (DMRG)-X algorithm against exact results for the localized random field XX chain. We find that the eigenstates obtained via DMRG-X exhibit a highly accurate l-bit description for system sizes much bigger than the direct, many-body, exact diagonalization in the spin variables is able to access. We take advantage of the underlying free fermion description of the XX model to accurately test the strengths and limitations of this algorithm for large system sizes. We discuss the theoretical constraints on the performance of the algorithm from the entanglement properties of the eigenstates, and its actual performance at different values of disorder. A small but significant improvement to the algorithm is also presented, which helps significantly with convergence. We find that, at high entanglement, DMRG-X shows a bias towards eigenstates with low entanglement, but can be improved with increased bond dimension. This result suggests that one must be careful when applying the algorithm for interacting many-body localized spin models near a transition.

MSC:

82B10 Quantum equilibrium statistical mechanics (general)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] White SR. (1992) Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863-2866. (doi:10.1103/PhysRevLett.69.2863) · doi:10.1103/PhysRevLett.69.2863
[2] Schollwock U. (2011) The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96-192. (doi:10.1016/j.aop.2010.09.012) · Zbl 1213.81178 · doi:10.1016/j.aop.2010.09.012
[3] McCulloch IP. (2008)Infinite size density matrix renormalization group, revisited. (http://arxiv.org/abs/0804.2509)
[4] Schuch N, Wolf MM, Verstraete F, Cirac JI. (2008) Entropy scaling and simulability by matrix product states. Phys. Rev. Lett. 100, 030504. (doi:10.1103/PhysRevLett.100.030504) · Zbl 1228.82014 · doi:10.1103/PhysRevLett.100.030504
[5] Hastings MB. (2007) An area law for one-dimensional quantum systems. J. Stat. Mech.: Theory Exp. 2007, P08024. (doi:10.1088/1742-5468/2007/08/P08024) · doi:10.1088/1742-5468/2007/08/P08024
[6] Arad ZLI, Kitaev A, Vazirani U. (2013)An area law and sub-exponential algorithm for 1D systems. (http://arxiv.org/abs/1301.1162)
[7] Eisert J. (2006) Computational difficulty of global variations in the density matrix renormalization group. Phys. Rev. Lett. 97, 260501. (doi:10.1103/PhysRevLett.97.260501) · doi:10.1103/PhysRevLett.97.260501
[8] Zeph L, Umesh V, Thomas V. (2015) A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians. Nat. Phys. 11, 566-569. (doi:10.1038/nphys3345) · doi:10.1038/nphys3345
[9] Anderson PW. (1958) Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492-1505. (doi:10.1103/PhysRev.109.1492) · doi:10.1103/PhysRev.109.1492
[10] Basko DM, Aleiner IL, Altshuler BL. (2006) Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126-1205. (doi:10.1016/j.aop.2005.11.014) · Zbl 1091.82014 · doi:10.1016/j.aop.2005.11.014
[11] Pal A, Huse DA. (2010) Many-body localization phase transition. Phys. Rev. B 82, 174411. (doi:10.1103/PhysRevB.82.174411) · doi:10.1103/PhysRevB.82.174411
[12] Oganesyan V, Huse DA. (2007) Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111. (doi:10.1103/PhysRevB.75.155111) · doi:10.1103/PhysRevB.75.155111
[13] Nandkishore R, Huse DA. (2015) Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15-38. (doi:10.1146/annurev-conmatphys-031214-014726) · doi:10.1146/annurev-conmatphys-031214-014726
[14] Altman E, Vosk R. (2015) Universal dynamics and renormalization in many-body-localized systems. Annu. Rev. Condens. Matter Phys. 6, 383-409. (doi:10.1146/annurev-conmatphys-031214-014701) · doi:10.1146/annurev-conmatphys-031214-014701
[15] Bauer B, Nayak C. (2013) Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech.: Theory Exp. 2013, P09005. (doi:10.1088/1742-5468/2013/09/P09005) · doi:10.1088/1742-5468/2013/09/P09005
[16] Pekker D, Clark BK. (2017) Encoding the structure of many-body localization with matrix product operators. Phys. Rev. B 95, 035116. (doi:10.1103/PhysRevB.95.035116) · doi:10.1103/PhysRevB.95.035116
[17] Chandran A, Carrasquilla J, Kim IH, Abanin DA, Vidal G. (2015) Spectral tensor networks for many-body localization. Phys. Rev. B 92, 024201. (doi:10.1103/PhysRevB.92.024201) · doi:10.1103/PhysRevB.92.024201
[18] Huse DA, Nandkishore R, Oganesyan V, Pal A, Sondhi SL. (2013) Localization-protected quantum order. Phys. Rev. B 88, 014206. (doi:10.1103/PhysRevB.88.014206) · doi:10.1103/PhysRevB.88.014206
[19] Pekker D, Refael G, Altman E, Demler E, Oganesyan V. (2014) Hilbert-Glass transition: new universality of temperature-tuned many-body dynamical quantum criticality. Phys. Rev. X 4, 011052. (doi:10.1103/PhysRevX.4.011052) · doi:10.1103/PhysRevX.4.011052
[20] Parameswaran SA, Potter AC, Vasseur R. (2016)Eigenstate phase transitions and the emergence of universal dynamics in highly excited states. (http://arxiv.org/abs/1610.03078)
[21] Oganesyan V, Huse DA. (2007) Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111. (doi:10.1103/PhysRevB.75.155111) · doi:10.1103/PhysRevB.75.155111
[22] Kjäall JA, Bardarson JH, Pollmann F. (2014) Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 113, 107204. (doi:10.1103/PhysRevLett.113.107204) · doi:10.1103/PhysRevLett.113.107204
[23] Vosk R, Huse DA, Altman E. (2015) Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 5, 031032. (doi:10.1103/PhysRevX.5.031032) · doi:10.1103/PhysRevX.5.031032
[24] Potter AC, Vasseur R, Parameswaran SA. (2015) Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033. (doi:10.1103/PhysRevX.5.031033) · doi:10.1103/PhysRevX.5.031033
[25] Devakul T, Singh RRP. (2015) Early breakdown of area-law entanglement at the many-body delocalization transition. Phys. Rev. Lett. 115, 187201. (doi:10.1103/PhysRevLett.115.187201) · doi:10.1103/PhysRevLett.115.187201
[26] Luitz DJ, Laflorencie N, Alet F. (2015) Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 081103. (doi:10.1103/PhysRevB.91.081103) · doi:10.1103/PhysRevB.91.081103
[27] Zhang L, Zhao B, Devakul T, Huse DA. (2016) Many-body localization phase transition: a simplified strong-randomness approximate renormalization group. Phys. Rev. B 93, 224201. (doi:10.1103/PhysRevB.93.224201) · doi:10.1103/PhysRevB.93.224201
[28] Serbyn M, Moore JE. (2016) Spectral statistics across the many-body localization transition. Phys. Rev. B 93, 041424. (doi:10.1103/PhysRevB.93.041424) · doi:10.1103/PhysRevB.93.041424
[29] Zhang L, Khemani V, Huse DA. (2016) A Floquet model for the many-body localization transition. Phys. Rev. B 94, 224202. (doi:10.1103/PhysRevB.94.224202) · doi:10.1103/PhysRevB.94.224202
[30] Khemani V, Sheng DN, Huse DA. (2017)Two universality classes for the many-body localization transition. (http://arxiv.org/abs/1702.03932)
[31] Luitz DJ, Laflorencie N, Alet F. (2015) Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 081103. (doi:10.1103/PhysRevB.91.081103) · doi:10.1103/PhysRevB.91.081103
[32] Khemani V, Lim SP, Sheng DN, Huse DA. (2016)Critical properties of the many-body localization transition. (http://arxiv.org/abs/1607.05756)
[33] Grover T. (2014)Certain general constraints on the many-body localization transition. (http://arxiv.org/abs/1405.1471)
[34] Pollmann F, Khemani V, Cirac JI, Sondhi SL. (2016) Efficient variational diagonalization of fully many-body localized Hamiltonians. Phys. Rev. B 94, 041116. (doi:10.1103/PhysRevB.94.041116) · doi:10.1103/PhysRevB.94.041116
[35] Wahl TB, Pal A, Simon SH. (2016)Efficient representation of fully many-body localized systems using tensor networks. (http://arxiv.org/abs/1609.01552)
[36] Khemani V, Pollmann F, Sondhi SL. (2016) Obtaining highly excited eigenstates of many-body localized Hamiltonians by the density matrix renormalization group approach. Phys. Rev. Lett. 116, 247204. (doi:10.1103/PhysRevLett.116.247204) · doi:10.1103/PhysRevLett.116.247204
[37] Yu X, Pekker D, Clark BK. (2017) Finding matrix product state representations of highly excited eigenstates of many-body localized Hamiltonians. Phys. Rev. Lett. 118, 017201. (doi:10.1103/PhysRevLett.118.017201) · doi:10.1103/PhysRevLett.118.017201
[38] Lim SP, Sheng DN. (2016) Many-body localization and transition by density matrix renormalization group and exact diagonalization studies. Phys. Rev. B 94, 045111. (doi:10.1103/PhysRevB.94.045111) · doi:10.1103/PhysRevB.94.045111
[39] Serbyn M, Michailidis AA, Abanin DA, Papić Z. (2016) Power-law entanglement spectrum in many-body localized phases. Phys. Rev. Lett. 117, 160601. (doi:10.1103/PhysRevLett.117.160601) · doi:10.1103/PhysRevLett.117.160601
[40] Kennes DM, Karrasch C. (2016) Entanglement scaling of excited states in large one-dimensional many-body localized systems. Phys. Rev. B 93, 245129. (doi:10.1103/PhysRevB.93.245129) · doi:10.1103/PhysRevB.93.245129
[41] Huse DA, Nandkishore R, Oganesyan V. (2014) Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202. (doi:10.1103/PhysRevB.90.174202) · doi:10.1103/PhysRevB.90.174202
[42] Serbyn M, Papić Z, Abanin DA. (2013) Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201. (doi:10.1103/PhysRevLett.111.127201) · doi:10.1103/PhysRevLett.111.127201
[43] Vidal G. (2003) Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902. (doi:10.1103/PhysRevLett.91.147902) · doi:10.1103/PhysRevLett.91.147902
[44] Kappus M, Wegner F. (1981) Anomaly in the band centre of the one-dimensional Anderson model. Z. Phys. B Condens. Matter 45, 15-21. (doi:10.1007/BF01294272) · doi:10.1007/BF01294272
[45] Eisler I. (2009) Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A: Math. Theor. 42, 504003. (doi:10.1088/1751-8113/42/50/504003) · Zbl 1179.81032 · doi:10.1088/1751-8113/42/50/504003
[46] Fishman MT, White SR. (2015) Compression of correlation matrices and an efficient method for forming matrix product states of fermionic Gaussian states. Phys. Rev. B 92, 075132. (doi:10.1103/PhysRevB.92.075132) · doi:10.1103/PhysRevB.92.075132
[47] Silvi P, Rossini D, Fazio R, Santoro GE, Giovannetti V. (2013) Matrix product state representation for Slater determinants and configuration interaction states. Int. J. Mod. Phys. B 27, 1345029. (doi:10.1142/S021797921345029X) · Zbl 1279.81082 · doi:10.1142/S021797921345029X
[48] Katsura H, Maruyama I. (2010) Derivation of the matrix product ansatz for the Heisenberg chain from the algebraic Bethe ansatz. J. Phys. A: Math. Theor. 43, 175003. (doi:10.1088/1751-8113/43/17/175003) · Zbl 1195.82061 · doi:10.1088/1751-8113/43/17/175003
[49] Murg V, Korepin VE, Verstraete F. (2012) Algebraic Bethe ansatz and tensor networks. Phys. Rev. B 86, 045125. (doi:10.1103/PhysRevB.86.045125) · doi:10.1103/PhysRevB.86.045125
[50] Aubry S, Andre G. (1980) · Zbl 0943.82510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.