×

zbMATH — the first resource for mathematics

Some evaluation of cubic Euler sums. (English) Zbl 1405.11111
Summary: P. Flajolet and B. Salvy [Exp. Math. 7, No. 1, 15–35 (1998; Zbl 0920.11061)] prove the famous theorem that a nonlinear Euler sum \(S_{i_1 i_2 \cdots i_r, q}\) reduces to a combination of sums of lower orders whenever the weight \(i_1 + i_2 + \cdots + i_r + q\) and the order \(r\) are of the same parity. In this article, we develop an approach to evaluate the cubic sums \(S_{1^2 m, p}\) and \(S_{1 l_1 l_2, l_3}\). By using the approach, we establish some relations involving cubic, quadratic and linear Euler sums. Specially, we prove the cubic sums \(S_{1^2 m, m}\) and \(S_{1(2 l + 1)^2, 2 l + 1}\) are reducible to zeta values, quadratic and linear sums. Moreover, we prove that the two combined sums involving multiple zeta values of depth four \[ \mathop{\sum}\limits_{\{i, j \} \in \{1, 2 \}, i \neq j} \zeta(m_i, m_j, 1, 1)\quad \text{and}\quad \mathop{\sum}\limits_{\{i, j, k \} \in \{1, 2, 3 \}, i \neq j \neq k} \zeta(m_i, m_j, m_k, 1) \] can be expressed in terms of multiple zeta values of depth \(\leq 3\), here \(2 \leq m_1, m_2, m_3 \in \mathbb{N}\). Finally, we evaluate the alternating cubic Euler sums \(S_{\overline{1}^3, 2 r + 1}\) and show that it are reducible to alternating quadratic and linear Euler sums. The approach is based on Tornheim type series computations.

MSC:
11M32 Multiple Dirichlet series and zeta functions and multizeta values
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Adamchik, V., On Stirling numbers and Euler sums, J. Comput. Appl. Math., 79, 1, 119-130, (1997) · Zbl 0877.39001
[2] Andrews, G. E.; Askey, R.; Roy, R., Special functions, 481-532, (2000), Cambridge University Press
[3] Bailey, D. H.; Borwein, J. M.; Girgensohn, R., Experimental evaluation of Euler sums, Exp. Math., 3, 1, 17-30, (1994) · Zbl 0810.11076
[4] Berndt, B. C., Ramanujan’s notebooks, part I, (1985), Springer-Verlag New York · Zbl 0555.10001
[5] Borwein, D.; Borwein, J. M.; Girgensohn, R., Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc., 38, 277-294, (1995) · Zbl 0819.40003
[6] Borwein, J.; Borwein, P.; Girgensohn, R.; Parnes, S., Making sense of experimental mathematics, Math. Intelligencer, 18, 4, 12-18, (1996) · Zbl 0874.00027
[7] Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J., Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, Electron. J. Combin., 4, 2, 1-21, (1997) · Zbl 0884.40004
[8] Borwein, J. M.; Bradley, D. M.; Broadhurst, D. J.; Lisoněk, P., Special values of multiple polylogarithms, Trans. Amer. Math. Soc., 353, 3, 907-941, (1999) · Zbl 1002.11093
[9] Borwein, J. M.; Girgensohn, R., Evaluation of triple Euler sums, Electron. J. Combin., 3, 2-7, (1996)
[10] Borwein, J. M.; Zucker, I. J.; Boersma, J., The evaluation of character Euler double sums, Ramanujan J., 15, 3, 377-405, (2008) · Zbl 1241.11108
[11] Comtet, L., Advanced combinatorics, (1974), D Reidel Publishing Company Boston
[12] Crandall, R. E.; Buhler, J. P., On the evaluation of Euler sums, Exp. Math., 4, 3, 275-285, (1994) · Zbl 0833.11045
[13] Eie, M.; Liaw, W.; Yang, F., On evaluation of generalized Euler sums of even weight, Int. J. Number Theory, 225, 1, 225-242, (2005) · Zbl 1087.11055
[14] Eie, M.; Wei, C., Evaluations of some quadruple Euler sums of even weight, Funct. Approx. Comment. Math., 46, 1, 63-67, (2012) · Zbl 1243.40004
[15] Flajolet, P.; Salvy, B., Euler sums and contour integral representations, Exp. Math., 7, 1, 15-35, (1998) · Zbl 0920.11061
[16] Freitas, P., Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums, Math. Comp., 74, 251, 1425-1440, (2005) · Zbl 1086.33019
[17] Hessami Pilehrood, Kh.; Hessami Pilehrood, T.; Tauraso, R., New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner’s series, Trans. Amer. Math. Soc., 366, 6, 3131-3159, (2014) · Zbl 1308.11018
[18] Hoffman, M. E., Multiple harmonic series, Pacific J. Math., 152, 275-290, (1992) · Zbl 0763.11037
[19] Mezö, I., Nonlinear Euler sums, Pacific J. Math., 272, 201-226, (2014) · Zbl 1325.11089
[20] Minh, H. N.; Petitot, M., Lyndon words, polylogarithms and the Riemann ζ function, Discrete Math., 217, 273-292, (2000) · Zbl 0959.68144
[21] Ong, Y. L.; Eie, M.; Liaw, W. C., Explict evaluation of triple Euler sums, Int. J. Number Theory, 4, 3, 437-451, (2008) · Zbl 1159.33004
[22] Ong, Y. L.; Eie, M.; Wei, C., Explicit evaluations of quadruple Euler sums, Acta Arith., 144, 213-230, (2010) · Zbl 1213.40003
[23] Si, X.; Xu, C., Evaluations of some quadratic Euler sums
[24] Tsumura, H., Combinatorial relations for Euler-Zagier sums, Acta Arith., 111, 27-42, (2004) · Zbl 1153.11327
[25] Wang, W.; Lyu, Y., Euler sums and Stirling sums, J. Number Theory, 185, 160-193, (2018) · Zbl 1390.11052
[26] Xu, C., Multiple zeta values and Euler sums, J. Number Theory, 177, 443-478, (2017) · Zbl 1406.11089
[27] Xu, C., Evaluations of nonlinear Euler sums of weight ten
[28] Xu, C.; Cai, Y., On harmonic numbers and nonlinear Euler sums · Zbl 1418.11126
[29] Xu, C.; Cheng, J., Some results on Euler sums, Funct. Approx. Comment. Math., 54, 1, 25-37, (2016) · Zbl 1407.11097
[30] Xu, C.; Li, Z., Tornheim type series and nonlinear Euler sums, J. Number Theory, 174, 40-67, (2017) · Zbl 1365.11099
[31] Xu, C.; Yan, Y.; Shi, Z., Euler sums and integrals of polylogarithm functions, J. Number Theory, 165, 84-108, (2016) · Zbl 1349.11054
[32] Xu, C.; Yang, Y.; Zhang, J., Explicit evaluation of quadratic Euler sums, Int. J. Number Theory, 13, 3, 655-672, (2017) · Zbl 1416.11131
[33] Xu, C.; Zhang, M.; Zhu, W., Some evaluation of harmonic number sums, Integral Transforms Spec. Funct., 27, 12, 937-955, (2016) · Zbl 1402.11114
[34] Zagier, D., Values of zeta functions and their applications, (First European Congress of Mathematics, Volume II, Progress in Mathematics, vol. 120, (1994), Birkhauser Boston), 497-512 · Zbl 0822.11001
[35] Zagier, D., Evaluation of the multiple zeta values \(\zeta(2, . . ., 2, 3, 2, . . ., 2)\), Ann. of Math., 2, 2, 977-1000, (2012) · Zbl 1268.11121
[36] Zhao, J., Multiple zeta functions, multiple polylogarithms and their special values, (2015), World Scientific
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.