zbMATH — the first resource for mathematics

Third-power associative absolute valued algebras with all its idempotents pairwise flexible. (English) Zbl 1405.17006
On the one hand, an algebra \(A\) is called a third-power associative algebra if the identity \(x^2x=xx^2\) holds for any \(x \in A\).
On the other hand we recall that a real algebra \(A \neq 0\) is said to be an absolute valued algebra if its vector space is a normed space whose norm \(| \cdot|\) satisfies \(|xy|=|x|\) \(|y|\) for any \(x,y \in A\).
The paper under review is devoted to study third power associative absolute valued algebras. In this framework it is known that if \(A\) is finite-dimensional, then \(A\) is (isometrically) isomorphic to \({\mathbb R}\), \({\mathbb C}\), \({\mathbb H}\), \({\mathbb O}\), \(\mathop{\mathbb C}\limits^*\), \(\mathop{\mathbb H}\limits^*\), \(\mathop{\mathbb O}\limits^*\) or \({\mathbb P}\). However, the classification in the infinite dimensional case is an open problem. In this line the author proves that in case either every two different nonzero idempotents of \(A\) are pairwise flexible or each pair of different nonzero idempotents of \(A\) generates a finite-dimensional subalgebra, then \(A\) is finite dimensional and so (isometrically) isomorphic to one of the above ones.
17A80 Valued algebras
Full Text: DOI
[1] Albert, AA, Absolute valued algebraic algebras, Bull. Am. Math Soc., 55, 763-768, (1949) · Zbl 0033.34901
[2] Cabrera, M., Rodríguez, A.: Non-associative normed algebras: Volume 1 the Vidav-Palmer and Gelfand-Naimark theorems. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2014) · Zbl 1322.46003
[3] Cuenca, JA, One-sided division infinite dimensional normed real algebras, Publ. Mat., 36, 485-488, (1992) · Zbl 0783.17001
[4] Cuenca, JA, On composition and absolute valued algebras, Proc. R. Soc. Edinb. A, 136A, 717-731, (2006) · Zbl 1153.17002
[5] Cuenca, JA, Third-power associative absolute valued algebras with a nonzero idempotent commuting with all idempotents, Publ. Mat., 58, 469-484, (2014) · Zbl 1342.17001
[6] Cuenca, JA, On the structure of the third-power associative absolute valued algebras, Bull. Malays. Math. Sci. Soc., 40, 1135-1148, (2017) · Zbl 1369.17004
[7] Cuenca, JA; Rodríguez, A, Absolute values on \({H}^⋆ \)-algebras, Commun. Algebra, 23, 2595-2610, (1995)
[8] El-Mallah, ML, Sur LES algèbres absolument valuées qui vérifient l’identité \((x, x, x) = 0\), J. Algebra, 80, 314-322, (1983) · Zbl 0503.17001
[9] El-Mallah, ML, Absolute valued algebras containing a central idempotent, J. Algebra, 128, 180-187, (1990) · Zbl 0688.17001
[10] El-Mallah, ML; Micali, A, Sur LES dimensions des algèbres absolument valuées, J. Algebra, 68, 237-246, (1981) · Zbl 0455.17001
[11] Okubo, S, Pseudo-quaternion and pseudo-octonion algebras, Hadron. J., 1, 1250-1278, (1978) · Zbl 0417.17011
[12] Rodríguez, A, One-sided division absolute valued algebras, Publ. Mat., 36, 925-954, (1992) · Zbl 0797.46040
[13] Urbanik, K; Wright, FB, Absolute valued algebras, Proc. Am. Math Soc., 11, 861-866, (1960) · Zbl 0156.03801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.