×

zbMATH — the first resource for mathematics

The first stable homotopy groups of motivic spheres. (English) Zbl 1406.14018
The homotopy groups of the motivic sphere spectrum \(\pi_{p,q}\mathbb{S}\) are fundamental invariants in motivic homotopy theory, which are analogs of the homotopy groups in algebraic topology that in addition carry arithmetic information about fields.
A famous result of F. Morel [in: Proceedings of the international congress of mathematicians (ICM). Volume II: Invited lectures. Zürich: European Mathematical Society (EMS). 1035–1059 (2006; Zbl 1097.14014)] says that \(\pi_{p,q}\mathbb{S}=0\) when \(p<q\) and \(\pi_{n,n}\mathbb{S}=K^{MW}_n(F)\) is the Milnor-Witt \(K\)-theory, but very few is known on the \(r\)-line \(\pi_{n+r,n}\mathbb{S}\) for \(r>0\).
This paper is a solid step towards the understanding of these groups, where the authors are able to compute the \(1\)-line (Theorem 5.5): if \(S\) is a scheme and \(\Lambda\) is a ring such that \((S,\Lambda)\) is a compatible pair (Definition 2.1), for example if \(S\) is smooth over a field whose exponential characteristic is invertible in \(\Lambda\), or if \(S\) is regular and \(\Lambda=\mathbb{Q}\), then there is an exact sequence of Nisnevich sheaves over smooth \(S\)-schemes \[ 0\to K^M_{2-n}\otimes\Lambda/24 \to \pi_{n+1,n}\mathbb{S}_\Lambda \to \pi_{n+1,n}f_0(\mathbf{KQ}_\Lambda) \] where \(f_0(\mathbf{KQ}_\Lambda)\) is the effective cover of the hermitian \(K\)-theory spectrum, and the sequence is also right exact for \(n\geq-4\).
The main tool is Voevodsky’s slice spectral sequence [V. Voevodsky, in: Motives, polylogarithms and Hodge theory. Part I: Motives and polylogarithms. Papers from the International Press conference, Irvine, CA, USA, June 1998. Somerville, MA: International Press. 3–34 (2002; Zbl 1047.14012)], which is an analog of the Atiyah-Hirzebruch spectral sequence. Using some convergence results on the slice spectral sequence, the basic idea is to identify the slices of the sphere spectrum (Theorem 2.12) and compute the first differentials in terms of motivic Steenrod operations (Proposition 4.18).

MSC:
14F42 Motivic cohomology; motivic homotopy theory
55Q45 Stable homotopy of spheres
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, J. F., On the groups \(J(X)\). I, Topology. Topology. An International Journal of Mathematics, 2, 181-195, (1963) · Zbl 0121.39704
[2] Andrews, Michael; Miller, Haynes, Inverting the Hopf map, J. Topol.. Journal of Topology, 10, 1145-1168, (2017) · Zbl 1422.55034
[3] Asok, Aravind; Fasel, Jean, Splitting vector bundles outside the stable range and \(\Bbb{A}^1\)-homotopy sheaves of punctured affine spaces, J. Amer. Math. Soc.. Journal of the Amer. Math. Soc., 28, 1031-1062, (2015) · Zbl 1329.14045
[4] Asok, Aravind; Fasel, Jean, An explicit \(KO\)-degree map and applications, J. Topol.. Journal of Topology, 10, 268-300, (2017) · Zbl 1400.14060
[5] Asok, Aravind; Wickelgren, Kirsten; Williams, Ben, The simplicial suspension sequence in \(\Bbb{A}^1\)-homotopy, Geom. Topol.. Geometry & Topology, 21, 2093-2160, (2017) · Zbl 1365.14027
[6] Atiyah, M. F.; Hirzebruch, F., Vector bundles and homogeneous spaces. Proc. Sympos. Pure Math., Vol. III, 7-38, (1961)
[7] Bass, H.; Tate, J., The Milnor ring of a global field. Algebraic \(K\)-theory, II: ““‘Classical””’ Algebraic \(K\)-Theory and Connections with Arithmetic, 342, 349-446, (1973)
[8] Boardman, J. Michael, Conditionally convergent spectral sequences. Homotopy Invariant Algebraic Structures, Contemp. Math., 239, 49-84, (1999) · Zbl 0947.55020
[9] Borel, Armand, Stable real cohomology of arithmetic groups, Ann. Sci. \'Ecole Norm. Sup. (4). Annales Scientifiques de l’\'Ecole Normale Sup\'erieure. Quatri\`“‘eme S\'”’erie, 7, 235-272, (1974) · Zbl 0316.57026
[10] Cisinski, Denis-Charles; D\'eglise, Fr\'ed\'eric, \'Etale motives, Compos. Math.. Compositio Mathematica, 152, 556-666, (2016) · Zbl 1453.14059
[11] Dugger, Daniel; Isaksen, Daniel C., Motivic cell structures, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 5, 615-652, (2005) · Zbl 1086.55013
[12] Dugger, Daniel; Isaksen, Daniel C., Motivic Hopf elements and relations, New York J. Math.. New York Journal of Mathematics, 19, 823-871, (2013) · Zbl 1361.14019
[13] Dugger, Daniel; Isaksen, Daniel C., Low-dimensional Milnor-Witt stems over \(\Bbb{R}\), Ann. K-Theory. Annals of K-Theory, 2, 175-210, (2017) · Zbl 1400.14064
[14] Elman, Richard; Karpenko, Nikita; Merkurjev, Alexander, The Algebraic and Geometric Theory of Quadratic Forms, Amer. Math. Soc. Colloq. Publ., 56, viii+435 pp., (2008) · Zbl 1165.11042
[15] Elman, Richard; Lam, T. Y., Pfister forms and \(K\)-theory of fields, J. Algebra. Journal of Algebra, 23, 181-213, (1972) · Zbl 0246.15029
[16] Geisser, Thomas, Motivic cohomology over Dedekind rings, Math. Z.. Mathematische Zeitschrift, 248, 773-794, (2004) · Zbl 1062.14025
[17] Guti\'errez, Javier J.; R\"ondigs, Oliver; Spitzweck, Markus; \Ostv\aer, Paul Arne, On (co)localization of algebras over operads, (2018) · Zbl 1258.18012
[18] Guti\'errez, Javier J.; R\"ondigs, Oliver; Spitzweck, Markus; \Ostv\aer, Paul Arne, Motivic slices and coloured operads, J. Topol.. Journal of Topology, 5, 727-755, (2012) · Zbl 1258.18012
[19] Heller, J.; Ormsby, K., Galois equivariance and stable motivic homotopy theory, Trans. Amer. Math. Soc.. Transactions of the Amer. Math. Soc., 368, 8047-8077, (2016) · Zbl 1346.14049
[20] Hirschhorn, Philip S., Model Categories and their Localizations, Math. Surveys Monogr., 99, xvi+457 pp., (2003) · Zbl 1017.55001
[21] Hopkins, M. J., Algebraic topology and modular forms. Proceedings of the International Congress of Mathematicians, Vol. I, 291-317, (2002) · Zbl 1031.55007
[22] Hornbostel, Jens, \(A^1\)-representability of Hermitian \(K\)-theory and Witt groups, Topology. Topology. An International Journal of Mathematics, 44, 661-687, (2005) · Zbl 1078.19004
[23] Hornbostel, Jens, Preorientations of the derived motivic multiplicative group, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 13, 2667-2712, (2013) · Zbl 1281.55009
[24] Hovey, Mark, Model Categories, Math. Surveys Monogr., 63, xii+209 pp., (1999) · Zbl 0909.55001
[25] Hoyois, Marc, A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 14, 3603-3658, (2014) · Zbl 1351.14013
[26] Hoyois, Marc, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math.. Journal f\`“‘ur die Reine und Angewandte Mathematik. [Crelle””s Journal], 702, 173-226, (2015) · Zbl 1382.14006
[27] Hoyois, Marc; Kelly, Shane; \Ostv\aer, Paul Arne, The motivic Steenrod algebra in positive characteristic, J. Eur. Math. Soc. (JEMS). Journal of the European Mathematical Society (JEMS), 19, 3813-3849, (2017) · Zbl 1386.14087
[28] Hu, P.; Kriz, I.; Ormsby, K., Convergence of the motivic Adams spectral sequence, J. \(K\)-Theory. Journal of \(K\)-Theory. \(K\)-Theory and its Applications in Algebra, Geometry, Analysis & Topology, 7, 573-596, (2011) · Zbl 1309.14018
[29] Jardine, J. F., Motivic symmetric spectra, Doc. Math.. Documenta Mathematica, 5, 445-552, (2000) · Zbl 0969.19004
[30] Levine, Marc, The indecomposable \(K_3\) of fields, Ann. Sci. \'Ecole Norm. Sup. (4). Annales Scientifiques de l’\'Ecole Normale Sup\'erieure. Quatri\`“‘eme S\'”’erie, 22, 255-344, (1989) · Zbl 0705.19001
[31] Levine, Marc, The homotopy coniveau tower, J. Topol.. Journal of Topology, 1, 217-267, (2008) · Zbl 1154.14005
[32] Levine, Marc, Convergence of Voevodsky’s slice tower, Doc. Math.. Documenta Mathematica, 18, 907-941, (2013) · Zbl 1284.14030
[33] Levine, Marc, A comparison of motivic and classical stable homotopy theories, J. Topol.. Journal of Topology, 7, 327-362, (2014) · Zbl 1333.14021
[34] Levine, Marc, The Adams-Novikov spectral sequence and Voevodsky’s slice tower, Geom. Topol.. Geometry & Topology, 19, 2691-2740, (2015) · Zbl 1432.55030
[35] Lichtenbaum, Stephen, The construction of weight-two arithmetic cohomology, Invent. Math.. Inventiones Mathematicae, 88, 183-215, (1987) · Zbl 0615.14004
[36] Mandell, Michael A., Flatness for the \(E_\infty\) tensor product. Homotopy Methods in Algebraic Topology, Contemp. Math., 271, 285-309, (2001) · Zbl 0995.18007
[37] Massey, W. S., Products in exact couples, Ann. of Math. (2). Annals of Mathematics. Second Series, 59, 558-569, (1954) · Zbl 0057.15204
[38] Merkurjev, A., Weight two motivic cohomology of classifying spaces for semisimple groups, Amer. J. Math.. American Journal of Mathematics, 138, 763-792, (2016) · Zbl 1346.14051
[39] Merkur\cprimeev, A. S.; Suslin, A. A., The group \(K_3\) for a field, Izv. Akad. Nauk SSSR Ser. Mat.. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 54, 522-545, (1990) · Zbl 0711.19002
[40] Merkurjev, Alexander; Suslin, Andrei, Motivic cohomology of the simplicial motive of a Rost variety, J. Pure Appl. Algebra. Journal of Pure and Applied Algebra, 214, 2017-2026, (2010) · Zbl 1200.14041
[41] Algebraic \(K\)-theory; motivic cohomology, Abstracts from the workshop held June 23–29, 2013, Oberwolfach Rep.. Oberwolfach Reports, 10, 1861-1913, (2013) · Zbl 1349.00165
[42] Milnor, John, Algebraic \(K\)-theory and quadratic forms, Invent. Math.. Inventiones Mathematicae, 9, 318-344, (1970) · Zbl 0199.55501
[43] Morel, Fabien, Rational stable splitting of Grassmanians and rational motivic sphere spectrum, (2006)
[44] Morel, Fabien, The stable \({\Bbb A}^1\)-connectivity theorems, \(K\)-Theory. \(K\)-Theory. An Interdisciplinary Journal for the Development, Application, and Influence of \(K\)-Theory in the Mathematical Sciences, 35, 1-68, (2005) · Zbl 1117.14023
[45] Morel, Fabien, \(\Bbb A^1\)-algebraic topology. International Congress of Mathematicians. Vol. II, 1035-1059, (2006) · Zbl 1097.14014
[46] Morel, Fabien, \(\Bbb A^1\)-algebraic topology over a field, Lecture Notes in Math., 2052, x+259 pp., (2012) · Zbl 1263.14003
[47] Naumann, Niko; Spitzweck, Markus; \Ostv\aer, Paul Arne, Motivic Landweber exactness, Doc. Math.. Documenta Mathematica, 14, 551-593, (2009) · Zbl 1230.55005
[48] Neeman, Amnon, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc.. Journal of the Amer. Math. Soc., 9, 205-236, (1996) · Zbl 0864.14008
[49] Novikov, S. P., Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat.. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 31, 855-951, (1967)
[50] Orlov, D.; Vishik, A.; Voevodsky, V., An exact sequence for \(K^M_\ast/2\) with applications to quadratic forms, Ann. of Math. (2). Annals of Mathematics. Second Series, 165, 1-13, (2007) · Zbl 1124.14017
[51] Ormsby, Kyle M.; \Ostv\aer, Paul Arne, Stable motivic \(\pi_1\) of low-dimensional fields, Adv. Math.. Advances in Mathematics, 265, 97-131, (2014) · Zbl 1304.55008
[52] Panin, I.; Walter, C., On the motivic commutative ring spectrum \(\bold{BO}\), (2011)
[53] Pelaez, Pablo, Multiplicative Properties of the Slice Filtration, Ast\'erisque, 335, xvi+289 pp., (2011) · Zbl 1235.14003
[54] Pelaez, Pablo, On the functoriality of the slice filtration, J. K-Theory. Journal of K-Theory. K-Theory and its Applications in Algebra, Geometry, Analysis & Topology, 11, 55-71, (2013) · Zbl 1319.14029
[55] Quick, Gereon, Stable \'etale realization and \'etale cobordism, Adv. Math.. Advances in Mathematics, 214, 730-760, (2007) · Zbl 1129.14031
[56] Quillen, Daniel, On the cohomology and \(K\)-theory of the general linear groups over a finite field, Ann. of Math. (2). Annals of Mathematics. Second Series, 96, 552-586, (1972) · Zbl 0249.18022
[57] Ravenel, Douglas C., Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, 121, xx+413 pp., (1986) · Zbl 0608.55001
[58] R\"ondigs, Oliver, On the \(\eta\)-inverted sphere, (2016) · Zbl 1416.19001
[59] R\`“ondigs, Oliver; \Ostv\aer, Paul Arne, Motives and modules over motivic cohomology, C. R. Math. Acad. Sci. Paris. Comptes Rendus Math\'”ematique. Acad\'emie des Sciences. Paris, 342, 751-754, (2006) · Zbl 1097.14016
[60] R\"ondigs, Oliver; \Ostv\aer, Paul Arne, Modules over motivic cohomology, Adv. Math.. Advances in Mathematics, 219, 689-727, (2008) · Zbl 1180.14015
[61] R\"ondigs, Oliver; \Ostv\aer, Paul Arne, Rigidity in motivic homotopy theory, Math. Ann.. Mathematische Annalen, 341, 651-675, (2008) · Zbl 1180.14014
[62] R\"ondigs, Oliver; \Ostv\aer, Paul Arne, The multiplicative structure on the graded slices of Hermitian \(K\)-theory and Witt-theory, Homology Homotopy Appl.. Homology, Homotopy and Applications, 18, 373-380, (2016) · Zbl 1352.14013
[63] R\`“ondigs, Oliver; \Ostv\aer, Paul Arne, Slices of Hermitian \(K\)-theory and Milnor”’s conjecture on quadratic forms, Geom. Topol.. Geometry & Topology, 20, 1157-1212, (2016) · Zbl 1416.19001
[64] R\"ondigs, Oliver; \Ostv\aer, Paul Arne, Cellularity of hermitian \({K}\)-theory and Witt-theory, (2016) · Zbl 1352.14013
[65] Schlichting, Marco, Hermitian \(K\)-theory, derived equivalences and Karoubi’s fundamental theorem, J. Pure Appl. Algebra. Journal of Pure and Applied Algebra, 221, 1729-1844, (2017) · Zbl 1360.19008
[66] Serre, \relax J-P, Cohomologie Galoisienne, Lecture Notes in Math., 5, x+181 pp., (1994) · Zbl 0128.26303
[67] Spitzweck, Markus, Algebraic cobordism in mixed characteristic, (2014) · Zbl 1209.14019
[68] Spitzweck, Markus, A commutative \(\mathbf{P}^1\)-spectrum representing motivic cohomology over Dedekind domains, M\'em. Soc. Math. France, 157, 114 pp. pp., (2018) · Zbl 1408.14081
[69] Spitzweck, Markus, Operads, algebras and modules in model categories and motives, 77 pp., (2001) · Zbl 1103.18300
[70] Spitzweck, Markus, Relations between slices and quotients of the algebraic cobordism spectrum, Homology Homotopy Appl.. Homology, Homotopy and Applications, 12, 335-351, (2010) · Zbl 1209.14019
[71] Spitzweck, Markus; \Ostv\aer, Paul Arne, Motivic twisted \(K\)-theory, Algebr. Geom. Topol.. Algebraic & Geometric Topology, 12, 565-599, (2012) · Zbl 1282.14040
[72] Voevodsky, Vladimir, \(\bold A^1\)-homotopy theory. Proceedings of the International Congress of Mathematicians, Vol. I, Doc. Math., 579-604, (1998) · Zbl 0907.19002
[73] Voevodsky, Vladimir, Open problems in the motivic stable homotopy theory. I. Motives, Polylogarithms and Hodge Theory, Part I, Int. Press Lect. Ser., 3, 3-34, (2002) · Zbl 1047.14012
[74] Voevodsky, Vladimir, A possible new approach to the motivic spectral sequence for algebraic \(K\)-theory. Recent Progress in Homotopy Theory, Contemp. Math., 293, 371-379, (2002) · Zbl 1009.19003
[75] Voevodsky, Vladimir, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes \'Etudes Sci.. Publications Math\'ematiques. Institut de Hautes \'Etudes Scientifiques, 98, 1-57, (2003) · Zbl 1057.14027
[76] Voevodsky, Vladimir, On the zero slice of the sphere spectrum, Tr. Mat. Inst. Steklova. Trudy Matematicheskogo Instituta Imeni V. A. Steklova. Rossi\u\i skaya Akademiya Nauk, 246, 106-115, (2004)
[77] Zahler, Raphael, The Adams-Novikov spectral sequence for the spheres, Ann. of Math. (2). Annals of Mathematics. Second Series, 96, 480-504, (1972) · Zbl 0244.55021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.