×

zbMATH — the first resource for mathematics

Anisotropic tensile failure of metals by the strain localization theory: an application to a high-strength aluminium alloy. (English) Zbl 1406.74155
Summary: This paper investigates the influence of plastic anisotropy on the tensile ductility of a high-strength aluminium alloy. To this end, finite element simulations of smooth and notched tension tests in different material directions are performed with an anisotropic plasticity model. The stress and strain histories from these simulations are then applied in localization analyses with the imperfection band approach, using the anisotropic plasticity model outside the band and an anisotropic version of the Gurson model inside the band. The imperfection within the band is represented by a volume fraction of void nucleating particles. The high-strength aluminium alloy AA7075-T651 is considered in this study. The results show that the directional dependency of the tensile ductility of the alloy found experimentally is predicted with good accuracy using the adopted approach. The numerical study indicates that plastic anisotropy plays an important role in determining the anisotropic tensile ductility of this high-strength aluminium alloy.

MSC:
74E10 Anisotropy in solid mechanics
74R20 Anelastic fracture and damage
Software:
ABAQUS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bao, Y.; Wierzbicki, T., On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., 46, 1, 81-98, (2004)
[2] Barlat, F.; Aretz, H.; Yoon, J. W.; Karabin, M. E.; Brem, J. C.; Dick, R. E., Linear transfomation-based anisotropic yield functions, Int. J. Plast., 21, 5, 1009-1039, (2005) · Zbl 1161.74328
[3] Barlat, F.; Yoon, J. W.; Cazacu, O., On linear transformations of stress tensors for the description of plastic anisotropy, Int. J. Plast., 23, 5, 876-896, (2007) · Zbl 1359.74014
[4] Barsoum, I.; Faleskog, J., Rupture mechanisms in combined tension and shear-experiments, Int. J. Solid Struct., 44, 1768-1786, (2007) · Zbl 1178.74016
[5] Barsoum, I.; Faleskog, J., Rupture mechanisms in combined tension and shear micromechanics, Int. J. Solid Struct., 44, 5481-5498, (2007) · Zbl 1178.74148
[6] Barsoum, I.; Faleskog, J., Micromechanical analysis on the influence of the lode parameter on void growth and coalescence, Int. J. Solid Struct., 48, 6, 925-938, (2011) · Zbl 1236.74229
[7] Basu, S.; Benzerga, A., On the path-dependence of the fracture locus in ductile materials: experiments, Int. J. Solid Struct., 71, 79-90, (Oct 2015)
[8] Benzerga, A. A.; Besson, J., Plastic potentials for anisotropic porous solids, Eur. J. Mech. Solid., 20, 3, 397-434, (2001) · Zbl 1049.74017
[9] Benzerga, A.; Leblond, J.-B., Ductile fracture by void growth to coalescence, Adv. Appl. Mech., 10, 169-305, (2010)
[10] Bron, F.; Besson, J., A yield function for anisotropic materials application to aluminum alloys, Int. J. Plast., 20, 4-5, 937-963, (2004) · Zbl 1254.74105
[11] Bryhni Dæhli, L. E.; Børvik, T.; Hopperstad, O. S., Influence of loading path on ductile fracture of tensile specimens made from aluminium alloys, Int. J. Solid Struct., 88-89, 17-34, (2016)
[12] Budiansky, B.; Hutchinson, J. W., Dynamic buckling of imperfection-sensitive structures, (1964)
[13] Børvik, T.; Hopperstad, O. S.; Pedersen, K. O., Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates, Int. J. Impact Eng., 37, 5, 537-551, (2010)
[14] Chien, W. Y.; Pan, J.; Tang, S. C., Modified anisotropic Gurson yield criterion for porous ductile sheet metals, J. Eng. Mater. Technol., 123, 4, 409, (2001)
[15] Chu, C. C.; Needleman, A., Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Technol., 102, 3, 249, (1980)
[16] Dassault Systèmes Simulia, Abaqus 6.14/analysis User’s guide, (2014)
[17] Dumont, D.; Deschamps, A.; Brechet, Y., On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy, Mater. Sci. Eng A, 356, 1-2, 326-336, (2003)
[18] Dumont, D.; Deschamps, A.; Brechet, Y., A model for predicting fracture mode and toughness in 7000 series aluminium alloys, Acta Mater., 52, 9, 2529-2540, (2004)
[19] Dunand, M.; Mohr, D., Effect of lode parameter on plastic flow localization after proportional loading at low stress triaxialities, J. Mech. Phys. Solid., 66, 1, 133-153, (2014) · Zbl 1323.74005
[20] Dæhli, L. E.B.; Faleskog, J.; Børvik, T.; Hopperstad, O. S., Unit cell simulations and porous plasticity modelling for recrystallization textures in aluminium alloys, Procedia Struct. Integr., 2, 2535-2542, (2016)
[21] Dæhli, L. E.B.; Morin, D.; Børvik, T.; Hopperstad, O. S., Influence of yield surface curvature on the macroscopic yielding and ductile failure of isotropic porous plastic materials, J. Mech. Phys. Solid., 107, 253-283, (Oct 2017)
[22] Fourmeau, M.; Børvik, T.; Benallal, A.; Lademo, O. G.; Hopperstad, O. S., On the plastic anisotropy of an aluminium alloy and its influence on constrained multiaxial flow, Int. J. Plast., 27, 12, 2005-2025, (2011) · Zbl 1426.74069
[23] Fourmeau, M.; Børvik, T.; Benallal, A.; Hopperstad, O. S., Anisotropic failure modes of high-strength aluminium alloy under various stress states, Int. J. Plast., 48, 34-53, (2013)
[24] Fourmeau, M.; Marioara, C.; Børvik, T.; Benallal, a.; Hopperstad, O., A study of the influence of precipitate-free zones on the strain localization and failure of the aluminium alloy AA7075-T651, Phil. Mag., 6435, 1-27, (2015), October
[25] Gruben, G.; Hopperstad, O. S.; Børvik, T., Evaluation of uncoupled ductile fracture criteria for the dual-phase steel docol 600DL, Int. J. Mech. Sci., 62, 1, 133-146, (2012)
[26] Gruben, G.; Morin, D.; Langseth, M.; Hopperstad, O. S., Strain localization and ductile fracture in advanced high-strength steel sheets, Eur. J. Mech. Solid., 61, 315-329, (2017) · Zbl 06917922
[27] Gurson, A. L., Continuum theory of ductile rupture by void nucleation and growth: part I yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 1, 2, (1977)
[28] Hershey, A. V., The plasticity of an isotropic aggregate of anisotropic face-centered cubic crystals, J. Appl. Mech., 21, 241-249, (1954) · Zbl 0059.18802
[29] Hill, R., A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. Lond A.: Math. Phys. Eng. Sci., 193, 1033, 281-297, (1948) · Zbl 0032.08805
[30] Hosford, W. F., A generalized isotropic yield criterion, J. Appl. Mech., 39, 241-249, (1972)
[31] Hutchinson, J., Imperfection-sensitivity in the plastic range, J. Mech. Phys. Solid., 21, 191-204, (1973) · Zbl 0264.73062
[32] Jordon, J. B.; Horstemeyer, M. F.; Solanki, K.; Bernard, J. D.; Berry, J. T.; Williams, T. N., Damage characterization and modeling of a 7075-T651 aluminum plate, Mater. Sci. Eng A, 527, 1-2, 169-178, (2009)
[33] Karafillis, A. P.; Boyce, M. C., A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solid., 41, 12, 1859-1886, (1993) · Zbl 0792.73029
[34] Keralavarma, S. M.; Benzerga, A. A., A constitutive model for plastically anisotropic solids with non-spherical voids, J. Mech. Phys. Solid., 58, 6, 874-901, (2010) · Zbl 1244.74030
[35] Keralavarma, S. M.; Benzerga, A. A., Numerical assessment of an anisotropic porous metal plasticity model, Mech. Mater., 90, 212-228, (2015)
[36] Keralavarma, S. M.; Chockalingam, S., A criterion for void coalescence in anisotropic ductile materials, Int. J. Plast., 82, 159-176, (2016)
[37] Keralavarma, S. M.; Hoelscher, S.; Benzerga, A. A., Void growth and coalescence in anisotropic plastic solids, Int. J. Solid Struct., 48, 11-12, 1696-1710, (2011) · Zbl 1236.74268
[38] Khadyko, M.; Dumoulin, S.; Cailletaud, G.; Hopperstad, O. S., Latent hardening and plastic anisotropy evolution in AA6060 aluminium alloy, Int. J. Plast., 76, 51-74, (2016)
[39] Koiter, W. T., The stability of elastic equilibrium, (1945), Techische Hooge School, PhD thesis
[40] Koiter, W. T., The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial compression, Proc. Koninklijke Nederl. Akademie Wetenschappen, 66, B, 265-279, (1963) · Zbl 0117.19103
[41] Li, H.; Fu, M.; Lu, J.; Yang, H., Ductile fracture: experiments and computations, Int. J. Plast., 27, 147-180, (Feb 2011)
[42] Liu, G.; Scudino, S.; Li, R.; Kühn, U.; Sun, J.; Eckert, J., Coupling effect of primary voids and secondary voids on the ductile fracture of heat-treatable aluminum alloys, Mech. Mater., 43, 10, 556-566, (2011)
[43] Liu, Z. G.; Wong, W. H.; Guo, T. F., Void behaviors from low to high triaxialities : transition from void collapse to void coalescence, Int. J. Plast., 84, 183-202, (2016)
[44] Lloyd, D. J., The scaling of the tensile ductile fracture strain with yield strength in al alloys, Scripta Mater., 48, 4, 341-344, (2003)
[45] Marciniak, Z.; Kuczyński, K., Limit strains in the processes of stretch-forming sheet metal, Int. J. Mech. Sci., 9, 9, 609-620, (1967)
[46] Mear, M.; Hutchinson, J., Influence of yield surface curvature on flow localization in dilatant plasticity, Mech. Mater., 4, 395-407, (Dec 1985)
[47] Morin, L.; Leblond, J. B.; Kondo, D., A Gurson-type criterion for plastically anisotropic solids containing arbitrary ellipsoidal voids, Int. J. Solid Struct., 77, 86-101, (2015)
[48] Morin, D.; Hopperstad, O. S.; Benallal, A., On the description of ductile fracture in metals by the strain localization theory, Int. J. Fract., (2017)
[49] Nahshon, K.; Hutchinson, J. W., Modification of the Gurson model for shear failure, Eur. J. Mech. Solid., 27, 1, 1-17, (2008) · Zbl 1129.74041
[50] Needleman, A.; Rice, J. R., Limits to ductility set by plastic flow localization, (1979)
[51] Needleman, A.; Tvergaard, V., Analyses of plastic flow localization in metals, Appl. Mech. Rev., 45, 3, (1992)
[52] Pan, J.; Saje, M.; Needleman, A., Localization of deformation in rate sensitive porous plastic solids, Int. J. Fract., 21, 4, 261-278, (1983)
[53] Pardoen, T.; Hutchinson, J. W., Extended model for void growth and coalescence, J. Mech. Phys. Solid., 48, 12, 2467-2512, (2000) · Zbl 1005.74059
[54] Rice, J. R., The localization of plastic deformation, (14th International Congress of Theoretical and Applied Mechanics, (1976)), 207-220
[55] Rudnicki, J. W.; Rice, J. R., Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solid., 23, 6, 371-394, (1975)
[56] Saje, M.; Pan, J.; Needleman, A., Void nucleation effects on shear localization in porous plastic solids, Int. J. Fract., 19, 3, 163-182, (1982)
[57] Scheyvaerts, F.; Onck, P. R.; Tekoglu, C.; Pardoen, T., The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension, J. Mech. Phys. Solid., 59, 2, 373-397, (2011) · Zbl 1270.74191
[58] Steglich, D.; Brocks, W.; Heerens, J.; Pardoen, T., Anisotropic ductile fracture of al 2024 alloys, Eng. Fract. Mech., 75, 12, 3692-3706, (2008)
[59] Steglich, D.; Wafai, H.; Besson, J., Interaction between anisotropic plastic deformation and damage evolution in al 2198 sheet metal, Eng. Fract. Mech., 77, 17, 3501-3518, (2010)
[60] Tekoglu, C.; Leblond, J. B.; Pardoen, T., A criterion for the onset of void coalescence under combined tension and shear, J. Mech. Phys. Solid., 60, 7, 1363-1381, (2012)
[61] Tekoglu, C.; Hutchinson, J. W.; Pardoen, T., On localization and void coalescence as a precursor to ductile fracture, Phil. Trans. Series A, Math, Phys. Eng. Sci., 373, 2038, (2015)
[62] Torki, M. E.; Tekoglu, C.; Leblond, J. B.; Benzerga, A. A., Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings, Int. J. Plast., 91, 160-181, (2017)
[63] Tvergaard, V., Influence of voids on shear band instability under plane strain conditions, Int. J. Fract., 17, 4, 389-407, (1981)
[64] Wang, D. A.; Pan, J.; Liu, S. D., An anisotropic Gurson yield criterion for porous ductile sheet metals with planar anisotropy, Int. J. Damage Mech., 13, 1, 7-33, (2004)
[65] Westermann, I.; Snilsberg, K. E.; Sharifi, Z.; Hopperstad, O. S.; Marthinsen, K.; Holmedal, B., Three-point bending of heat-treatable aluminum alloys: influence of microstructure and texture on bendability and fracture behavior, Metall. Mater. Trans. A: Phy. Metall. Mater. Sci., 42, 11, 3386-3398, (2011)
[66] Westermann, I.; Pedersen, K. O.; Furu, T.; Børvik, T.; Hopperstad, O. S., Effects of particles and solutes on strength, work-hardening and ductile fracture of aluminium alloys, Mech. Mater., 79, 58-72, (2014)
[67] Yamamoto, H., Conditions for shear localization in the ductile fracture of void-containing materials, Int. J. Fract., 14, 4, 347-365, (1978)
[68] Zhang, K.; Holmedal, B.; Hopperstad, O. S.; Dumoulin, S.; Gawad, J.; Van Bael, A.; Van Houtte, P., Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification, Int. J. Plast., 66, 3-30, (2015)
[69] Zhang, H.; Diehl, M.; Roters, F.; Raabe, D., A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations, Int. J. Plast., 80, 111-138, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.