×

zbMATH — the first resource for mathematics

Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. (English) Zbl 1406.76028
Summary: The objective of this paper is to show that use of the element-vector-based definition of stabilization parameters, introduced in [T. E. Tezduyar, Int. J. Numer. Methods Fluids 43, No. 5, 555–575 (2003; Zbl 1032.76605); T. E. Tezduyar and Y. Osawa, Comput. Methods Appl. Mech. Eng. 190, No. 3–4, 411–430 (2000; Zbl 0973.76057)], circumvents the well-known instability associated with conventional stabilized formulations at small time steps. We describe formulations for linear advection-diffusion and incompressible Navier-Stokes equations and test them on three benchmark problems: advection of an L-shaped discontinuity, laminar flow in a square domain at low Reynolds number, and turbulent channel flow at friction-velocity Reynolds number of 395.

MSC:
76F65 Direct numerical and large eddy simulation of turbulence
76M30 Variational methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akkerman, I.; Bazilevs, Y.; Calo, V.M.; Hughes, T.J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. mech., 41, 371-378., (2008) · Zbl 1162.76355
[2] Y. Bazilevs, Isogeometric Analysis of Turbulence and Fluid-Structure Interaction, Ph.D. Thesis, ICES, UT Austin, 2006.
[3] Bazilevs, Y.; Calo, V.M.; Cottrel, J.A.; Hughes, T.J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. methods appl. mech. engrg., 197, 173-201, (2007) · Zbl 1169.76352
[4] Bazilevs, Y.; Calo, V.M.; Tezduyar, T.E.; Hughes, T.J.R., YZβ discontinuity capturing for advection-dominated processes with application to arterial drug delivery, Int. J. numer. methods fluids, 54, 593-608, (2007) · Zbl 1207.76049
[5] Bazilevs, Y.; Michler, C.; Calo, V.M.; Hughes, T.J.R., Weak Dirichlet boundary conditions for wall-bounded turbulent flows, Comput. methods appl. mech. engrg., 196, 4853-4862, (2007) · Zbl 1173.76397
[6] Bazilevs, Y.; Michler, C.; Calo, V.M.; Hughes, T.J.R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. methods appl. mech. engrg., 199, 780-790, (2010) · Zbl 1406.76023
[7] Bochev, P.B.; Gunzburger, M.D.; Lehoucq, R.B., On stabilized finite element methods for the Stokes problem in the small time step limit, Int. J. numer. methods fluids, 53, 573-597, (2007) · Zbl 1104.76059
[8] Bochev, P.B.; Gunzburger, M.D.; Shadid, J.N., On inf-sup stabilized finite element methods for transient problems, Comput. methods appl. mech. engrg., 193, 1471-1489, (2004) · Zbl 1079.76577
[9] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier – stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[10] V.M. Calo, Residual-based Multiscale Turbulence Modeling: Finite Volume Simulation of Bypass Transition, Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford University, 2004.
[11] Catabriga, L.; Coutinho, A.L.G.A.; Tezduyar, T.E., Compressible flow SUPG stabilization parameters computed from element-edge matrices, Comput. fluid dyn. J., 13, 450-459, (2004) · Zbl 1329.76161
[12] Catabriga, L.; Coutinho, A.L.G.A.; Tezduyar, T.E., Compressible flow SUPG parameters computed from element matrices, Commun. numer. methods engrg., 21, 465-476, (2005) · Zbl 1329.76161
[13] Catabriga, L.; Coutinho, A.L.G.A.; Tezduyar, T.E., Compressible flow SUPG parameters computed from degree-of-freedom submatrices, Comput. mech., 38, 334-343, (2006) · Zbl 1176.76061
[14] Chung, J.; Hulbert, G.M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method, J. appl. mech., 60, 71-75, (1993) · Zbl 0775.73337
[15] Codina, R.; Principe, J.; Guasch, O.; Badia, S., Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Comput. methods appl. mech. engrg., 196, 2413-2430, (2007) · Zbl 1173.76335
[16] Droux, J.-J.; Hughes, T.J.R., A boundary integral modification of the Galerkin least squares formulation for the Stokes problem, Comput. methods appl. mech. engrg., 113, 73-182, (1994) · Zbl 0845.76038
[17] Harari, I., Stability of semidiscrete formulations for parabolic problems at small time steps, Comput. methods appl. mech. engrg., 193, 1491-1516, (2004) · Zbl 1079.76597
[18] Harari, I.; Hauke, G., Semidiscrete formulations for transient transport at small time steps, Int. J. numer. methods fluids, 54, 731-743, (2007) · Zbl 1117.65127
[19] Holmen, J.; Hughes, T.J.R.; Oberai, A.A.; Wells, G.N., Sensitivity of the scale partition for variational multiscale LES of channel flow, Phys. fluids, 16, 824-827, (2004) · Zbl 1186.76234
[20] Houzeaux, G.; Principe, J., A variational subgrid scale model for transient incompressible flows, Int. J. comput. fluid dyn., 22, 135-152, (2008) · Zbl 1184.76802
[21] T.J.R. Hughes, V.M. Calo, G. Scovazzi, Variational and multiscale methods in turbulence, in: W. Gutkowski, T.A. Kowalewski (Eds.), Proceedings of the XXI International Congress of Theoretical and Applied Mechanics (IUTAM), Kluwer, 2004.
[22] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. methods appl. mech. engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[23] Hughes, T.J.R.; Mallet, M., A new finite element formulation for fluid dynamics: III. the generalized streamline operator for multidimensional advective – diffusive systems, Comput. methods appl. mech. engrg., 58, 305-328, (1986) · Zbl 0622.76075
[24] Hughes, T.J.R.; Mazzei, L.; Jansen, K.E., Large-eddy simulation and the variational multiscale method, Comput. visualizat. sci., 3, 47-59, (2000) · Zbl 0998.76040
[25] Hughes, T.J.R.; Mazzei, L.; Oberai, A.A.; Wray, A.A., The multiscale formulation of large eddy simulation: decay of homogenous isotropic turbulence, Phys. fluids, 13, 505-512, (2001) · Zbl 1184.76236
[26] Hughes, T.J.R.; Oberai, A.A.; Mazzei, L., Large-eddy simulation of turbulent channel flows by the variational multiscale method, Phys. fluids, 13, 784-1799, (2001)
[27] Hughes, T.J.R.; Sangalli, G., Variational multiscale analysis: the fine-scale green’s function, projection, optimization, localization, and stabilized methods, SIAM J. numer. anal., 45, 539-557, (2007) · Zbl 1152.65111
[28] Hughes, T.J.R.; Scovazzi, G.; Franca, L.P., Multiscale stabilized, (), (Chapter 2)
[29] R Hughes, T.J.; Tezduyar, T.E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. methods appl. mech. engrg., 45, 217-284, (1984) · Zbl 0542.76093
[30] Hughes, T.J.R.; Wells, G.N.; Wray, A.A., Energy transfers and spectral eddy viscosity of homogeneous isotropic turbulence: comparison of dynamic smagorinsky and multiscale models over a range of discretizations, Phys. fluids, 16, 4044-4052, (2004) · Zbl 1187.76226
[31] Jansen, K.E.; Whiting, C.H.; Hulbert, G.M., A generalized-\(\alpha\) method for integrating the filtered navier – stokes equations with a stabilized finite element method, Comput. methods appl. mech. engrg., 190, 305-319, (1999) · Zbl 0973.76048
[32] Johnson, C., Numerical solution of partial differential equations by the finite element method, (1987), Cambridge University Press Sweden
[33] Moser, R.; Kim, J.; Mansour, R., DNS of turbulent channel flow up to re=590, Phys. fluids, 11, 943-945, (1999) · Zbl 1147.76463
[34] Shakib, F.; Hughes, T.J.R., A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms, Comput. methods appl. mech. engrg., 87, 35-58, (1991) · Zbl 0760.76051
[35] Shakib, F.; Hughes, T.J.R.; Johan, Z., New finite element formulation for computational fluid dynamics: X. the compressible Euler and navier – stokes equations, Comput. methods appl. mech. engrg., 89, 141-219, (1991) · Zbl 0838.76040
[36] Simo, J.C.; Hughes, T.J.R., Computational inelasticity, (1998), Springer-Verlag New York · Zbl 0934.74003
[37] Tezduyar, T.E., Computation of moving boundaries and interfaces and stabilization parameters, Int. J. numer. methods fluids, 43, 555-575, (2003) · Zbl 1032.76605
[38] Tezduyar, T.E., Finite element methods for fluid dynamics with moving boundaries and interfaces, (), (Chapter 17) · Zbl 0848.76036
[39] Tezduyar, T.E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput. methods appl. mech. engrg., 190, 411-430, (2000) · Zbl 0973.76057
[40] Tezduyar, T.E.; Park, Y.J., Discontinuity capturing finite element formulations for nonlinear convection – diffusion – reaction equations, Comput. methods appl. mech. engrg., 59, 307-325, (1986) · Zbl 0593.76096
[41] Tezduyar, T.E.; Senga, M., Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Comput. methods appl. mech. engrg., 195, 1621-1632, (2006) · Zbl 1122.76061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.