×

zbMATH — the first resource for mathematics

Viscoelastic modeling of the fusion of multicellular tumor spheroids in growth phase. (English) Zbl 1406.92291
Summary: Background. Since several decades, the experiments have highlighted the analogy of fusing cell aggregates with liquid droplets. The physical macroscopic models have been derived under incompressible assumptions. The aim of this paper is to provide a 3D model of growing spheroids, which is more relevant regarding embryo cell aggregates or tumor cell spheroids.
Methods. We extend the past approach to a compressible 3D framework in order to account for the tumor spheroid growth. We exhibit the crucial importance of the effective surface tension, and of the inner pressure of the spheroid to describe precisely the fusion. The experimental data were obtained on spheroids of colon carcinoma human cells (HCT116 cell line). After 3 or 6 days of culture, two identical spheroids were transferred in one well and their fusion was monitored by live videomicroscopy acquisition each 2 h during 72 h. From these images the neck radius and the diameter of the assembly of the fusing spheroids are extracted.
Results. The numerical model is fitted with the experiments. It is worth noting that the time evolution of both neck radius and spheroid diameter are quantitatively obtained. The interesting feature lies in the fact that such measurements characterise the macroscopic rheological properties of the tumor spheroids.
Conclusions. The experimental determination of the kinetics of neck radius and overall diameter during spheroids fusion characterises the rheological properties of the spheroids. The consistency of the model is shown by fitting the model with two different experiments, enhancing the importance of both surface tension and cell proliferation.
General significance. The paper sheds new light on the macroscopic rheological properties of tumor spheroids. It emphasizes the role of the surface tension and the inner pressure in the fusion of growing spheroid. Under geometrical assumptions, the model reduces to a 2-parameter differential equation fit with experimental measurements. The 3-D partial differential system makes it possible to study the fusion of spheroids in non-symmetrical or more general frameworks.

MSC:
92C50 Medical applications (general)
92C15 Developmental biology, pattern formation
92C10 Biomechanics
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Software:
CellSys; SciPy
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Benzekry, S.; Lamont, C.; Beheshti, A.; Tracz, A.; Ebos, J. M.L.; Hlatky, L.; Hahnfeldt, P., Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput. Biol., 10, 8, 1-19, (2014)
[2] Billy, F.; Ribba, B.; Saut, O.; Morre-Trouilhet, H.; Colin, T.; Bresch, D.; Boissel, J.-P.; Grenier, E.; Flandrois, J.-P., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy, J. Theor. Biol., 260, 4, 545-562, (2009) · Zbl 1402.92050
[3] Blumlein, A.; Williams, N.; McManus, J. J., The mechanical properties of individual cell spheroids, Sci. Rep., (2017)
[4] Bresch, D., Colin, T., Grenier, E., Ribba, B., Saut, O., 2009. A viscoelastic model for avascular tumor growth. Conference Publications 2009(0133-0189-2009-Special-101). 10.3934/proc.2009.2009.101.
[5] Bresch, D.; Colin, T.; Grenier, E.; Ribba, B.; Saut, O., Computational modeling of solid tumor growth: the avascular stage, SIAM J. Scientif. Comput., 32, 4, 2321-2344, (2010) · Zbl 1214.92039
[6] Byrne, H.; King, J.; McElwain, D.; Preziosi, L., A two-phase model of solid tumour growth, Appl. Math. Lett., 16, 4, 567-573, (2003) · Zbl 1040.92015
[7] Cornelis, F.; Saut, O.; Cumsille, P.; Lombardi, D.; Iollo, A.; Palussiere, J.; Colin, T., In vivo mathematical modeling of tumor growth from imaging data: soon to come in the future?, Diagn. Interv. Imag., 94, 6, 593-600, (2013)
[8] Desmaison, A.; Frongia, C.; Grenier, K.; Ducommun, B.; Lobjois, V., Mechanical stress impairs mitosis progression in multi-cellular tumor spheroids, PLoS ONE, 8, 12, 1-10, (2013)
[9] Douezan, S.; Brochard-Wyart, F., Active diffusion-limited aggregation of cells, Soft Matter, 8, 784-788, (2012)
[10] Fleming, P. A.; Argraves, W. S.; Gentile, C.; Neagu, A.; Forgacs, G.; Drake, C. J., Fusion of uniluminal vascular spheroids: a model for assembly of blood vessels, Dev. Dyn., 239, 2, 398-406, (2010)
[11] Flenner, E.; Marga, F.; Neagu, A.; Kosztin, I.; Forgacs, G., Relating biophysical properties across scales, (Santiago Schnell, S. A.N.; Philip K., Maini; Newman, T. J., Multiscale Modeling of Developmental Systems, Vol. 81 of Current Topics in Developmental Biology, (2008), Academic Press), 461-483
[12] Forgacs, G.; Foty, R. A.; Shafrir, Y.; Steinberg, M. S., Viscoelastic properties of living embryonic tissues: a quantitative study, Biophys. J., 74, 5, 2227-2234, (1998)
[13] Foty, R.; Pfleger, C.; Forgacs, G.; Steinberg, M., Surface tensions of embryonic tissues predict their mutual envelopment behavior, Development, 122, 5, 1611-1620, (1996)
[14] Foty, R. A.; Forgacs, G.; Pfleger, C. M.; Steinberg, M. S., Liquid properties of embryonic tissues: measurement of interfacial tensions, Phys. Rev. Lett., 72, 2298-2301, (1994)
[15] Frenkel, J., Viscous flow of crystalline bodies under the action of surface tension, J. Phys., 9, 385, (1945)
[16] Glazier, J. A.; Graner, F.m.c., Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, 47, 2128-2154, (1993)
[17] Gomes, A.; Guillaume, L.; Grimes, D. R.; Fehrenbach, J.; Lobjois, V.; Ducommun, B., Oxygen partial pressure is a rate-limiting parameter for cell proliferation in 3d spheroids grown in physioxic culture condition, PLoS ONE, 11, 8, e0161239, (2016)
[18] Gompertz, B., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. Trans. R. Soc. Lond., 115, 513-583, (1825)
[19] Greenspan, H., On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56, 1, 229-242, (1976)
[20] Grinfeld, P., Hamiltonian dynamic equations for fluid films, Stud. Appl. Math., 125, 3, 223-264, (2010) · Zbl 1206.35206
[21] Hirschhaeuser, F.; Menne, H.; Dittfeld, C.; West, J.; Mueller-Klieser, W.; Kunz-Schughart, L. A., Multicellular tumor spheroids: an underestimated tool is catching up again, J. Biotechnol., 148, 1, 3-15, (2010)
[22] Hoehme, S.; Drasdo, D., A cell-based simulation software for multi-cellular systems, Bioinformatics, 26, 20, 2641-2642, (2010)
[23] Jakab, K.; Damon, B.; Marga, F.; Doaga, O.; Mironov, V.; Kosztin, I.; Markwald, R.; Forgacs, G., Relating cell and tissue mechanics: implications and applications, Dev. Dyn., 237, 9, 2438-2449, (2008)
[24] Jakab, K.; Neagu, A.; Mironov, V.; Markwald, R. R.; Forgacs, G., Engineering biological structures of prescribed shape using self-assembling multicellular systems, Proc. Natl. Acad. Sci. U.S.A., 101, 9, 2864-2869, (2004)
[25] Jakab, K.; Norotte, C.; Marga, F.; Murphy, K.; Vunjak-Novakovic, G.; Forgacs, G., Tissue engineering by self-assembly and bio-printing of living cells, Biofabrication, 2, 2, 022001, (2010)
[26] Jones, E., Oliphant, T., Peterson, P., et al., 2001-. SciPy: Open source scientific tools for Python. [Online; accessed  < today > ].
[27] Laird, A., Dynamics of tumour growth: comparison of growth rates and extrapolation of growth curve to one cell, Br. J. Cancer, 278-291, (1965)
[28] Laurent, J.; Frongia, C.; Cazales, M.; Mondesert, O.; Ducommun, B.; Lobjois, V., Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D, BMC Cancer, 13, 1, 73, (2013)
[29] Michel, T., Mathematical Analysis and Model Calibration for Tumor Growth Models, (2016), Université de Bordeaux, Theses
[30] Mironov, V.; Visconti, R. P.; Kasyanov, V.; Forgacs, G.; Drake, C. J.; Markwald, R. R., Organ printing: tissue spheroids as building blocks, Biomaterials, 30, 12, 2164-2174, (2009)
[31] Mombach, J. C.; Robert, D.; Graner, F.; Gillet, G.; Thomas, G. L.; Idiart, M.; Rieu, J.-P., Rounding of aggregates of biological cells: experiments and simulations, Physica A, 352, 2-4, 525-534, (2005)
[32] Pokluda, O.; Bellehumeur, C. T.; Vlachopoulos, J., Modification of frenkel’s model for sintering, AlChE J., 43, 3253-3256, (1997)
[33] Pérez-Pomares, J. M.; Foty, R. A., Tissue fusion and cell sorting in embryonic development and disease: biomedical implications, BioEssays, 28, 8, 809-821, (2006)
[34] Rofstad, E. K.; Galappathi, K.; Mathiesen, B. S., Tumor interstitial fluid pressure-a link between tumor hypoxia, microvascular density, and lymph node metastasis, Neoplasia, 586-594, (2014)
[35] Sciumè, G.; Santagiuliana, R.; Ferrari, M.; Decuzzi, P.; Schrefler, B. A., A tumor growth model with deformable ECM, Phys. Biol., 11, 6, 065004, (2014)
[36] Shaler, A. J., Seminar on the kinetics of sintering, Metals Trans., 185, 796-813, (1949)
[37] Spratt, J.; von Fournier, D.; Spratt, J.; Weber, E., Decelerating growth and human breast cancer, Cancer, 2013-2019, (1993)
[38] Steinberg, M. S., Reconstruction of tissues by dissociated cells, Science, 141, 3579, 401-408, (1963)
[39] Stirbat, T. V.; Mgharbel, A.; Bodennec, S.; Ferri, K.; Mertani, H. C.; Rieu, J.-P.; Delanoë-Ayari, H., Fine tuning of tissues’ viscosity and surface tension through contractility suggests a new role for α-catenin, PLoS ONE, 8, 2, 1-10, (2013)
[40] Sun, Y.; Wang, Q., Modeling and simulations of multicellular aggregate self-assembly in biofabrication using kinetic Monte Carlo methods, Soft Matter, 9, 2172-2186, (2013)
[41] Thomas, G. L.; Mironov, V.; Nagy-Mehez, A.; Mombach, J. C., Dynamics of cell aggregates fusion: experiments and simulations, Physica A, 395, 247-254, (2014)
[42] Von Bertalanffy, L., Quantitative laws in metabolism and growth., Q. Rev. Biol, 217-231, (1957)
[43] Wessels, A.; Sedmera, D., Developmental anatomy of the heart: a tale of mice and man, Physiol. Genomics, 15, 3, 165-176, (2003)
[44] Wilson, S.; Tod, M.; Ouerdani, A.; Emde, A.; Yarden, Y.; Berkane, A. A.; Kassour, S.; Wei, M.; Freyer, G.; You, B.; Grenier, E.; Ribba, B., Modeling and predicting optimal treatment scheduling between the antiangiogenic drug sunitinib and irinotecan in preclinical settings, CPT Pharmacometr. Syst. Pharmacol., 4, 12, 720-727, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.