×

zbMATH — the first resource for mathematics

State space model identification of multirate processes with time-delay using the expectation maximization. (English) Zbl 1406.93085
Summary: This paper presents the problems of state space model identification of multirate processes with unknown time delay. The aim is to identify a multirate state space model to approximate the parameter-varying time-delay system. The identification problems are formulated under the framework of the expectation maximization algorithm. Through introducing two hidden variables, a new expectation maximization algorithm is derived to estimate the unknown model parameters and the time-delays simultaneously. The effectiveness of the proposed algorithm is validated by a simulation example.

MSC:
93B30 System identification
93C35 Multivariable systems, multidimensional control systems
93C57 Sampled-data control/observation systems
93E10 Estimation and detection in stochastic control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Xu, L.; Ding, F., Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling, Circ. Syst. Signal Process., 36, 4, 1735-1753, (2017) · Zbl 1370.94286
[2] Xu, L.; Ding, F., Iterative parameter estimation for signal models based on measured data, Circu. Syst. Signal Process., 37, 7, 3046-3069, (2018)
[3] Xu, L., The parameter estimation algorithms based on the dynamical response measurement data, Adv. Mech. Eng., 9, 11, 1-12, (2017)
[4] Xu, L.; Xiong, W. L.; Alsaedi, A.; Hayat, T., Hierarchical parameter estimation for the frequency response based on the dynamical window data, Int. J. Control Autom. Syst., 16, 4, 1756-1764, (2018)
[5] Xu, L.; Ding, F., Parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle, IET Signal Process., 11, 2, 228-237, (2017)
[6] Xu, L.; Ding, F., Parameter estimation for control systems based on impulse responses, Int. J. Control Autom. Syst., 15, 6, 2471-2479, (2017)
[7] Rafal, S.; Marek, R.; Krzysztof, L., Modeling of discrete-time fractional-order state space systems using the balanced truncation method, J. Frankl. Inst., 354, 7, 3008-3020, (2017) · Zbl 1364.93438
[8] Ding, F., State filtering and parameter estimation for state space systems with scarce measurements, Signal Process., 104, 369-380, (2014)
[9] Bretas, N. G.; Bretas, A. S., A two steps procedure in state estimation gross error detection, identification, and correction, Int. J. Electr. Power Energy Syst., 73, 484-490, (2015)
[10] Gu, Y.; Ding, F.; Li, J. H., States based iterative parameter estimation for a state space model with multi-state delays using decomposition, Signal Process., 106, 230-294, (2015)
[11] Gu, Y.; Ding, F.; Li, J. H., State filtering and parameter estimation for linear systems with d-step state-delay, IET Signal Process., 8, 6, 639-646, (2014)
[12] Chen, J.; Ma, J. X.; Liu, Y. J., Identification methods for time-delay systems based on the redundant rules, Signal Process., 137, 192-198, (2017)
[13] Chen, J.; Zhu, Q. M.; Li, J., Biased compensation recursive least squares-based threshold algorithm for time-delay rational models via redundant rule, Nonlin. Dyn., 91, 2, 797-807, (2018) · Zbl 1390.93364
[14] Zheng, G.; Barbot, J. P.; Boutat, D., Identification of the delay parameter for nonlinear time-delay systems with unknown inputs, Automatica, 4, 6, 1755-1760, (2013) · Zbl 1360.93174
[15] Xu, L.; Ding, F.; Gu, Y., A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay, Signal Process., 140, 97-103, (2017)
[16] Ding, F.; Xu, L.; Zhu, Q. M., Performance analysis of the generalised projection identification for time-varying systems, IET Control Theory Appl., 10, 18, 2506-2514, (2016)
[17] Ding, F.; Wang, F. F.; Xu, L.; Hayat, T.; Alsaedi, A., Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique, IET Control Theory Appl., 11, 3, 390-400, (2017)
[18] Ding, F.; Wang, Y. J.; Dai, J. Y.; Li, Q. S.; Chen, Q. J., A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input-output data filtering, J. Frankl. Inst., 354, 15, 6938-6955, (2017) · Zbl 1373.93393
[19] Ding, F.; Chen, H. B.; Xu, L.; Dai, J. Y.; Li, Q. S.; Hayat, T., A hierarchical least squares identification algorithm for hammerstein nonlinear systems using the key term separation, J. Frankl. Inst., 355, 8, 3737-3752, (2018) · Zbl 1390.93818
[20] Ding, F.; Xu, L.; Alsaadi, F. E.; Hayat, T., Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique, IET Control Theory Appl., 12, 7, 892-899, (2018)
[21] Ding, J. L., Recursive and iterative least squares parameter estimation algorithms for multiple-input-output-error systems with autoregressive noise, Circ. Syst. Signal Process., 37, 5, 1884-1906, (2018)
[22] Yang, X. Q.; Gao, H. J., Multiple model approach to linear parameter varying time-delay system identification with EM algorithm, J. Frankl. Inst., 351, 12, 5565-5581, (2014) · Zbl 1393.93032
[23] Yang, X. Q.; Xiong, W. L.; Ma, J. X.; Wang, Z. Y., Robust identification of wiener time-delay system with expectation-maximization algorithm, J. Frankl. Inst., 354, 13, 5678-5693, (2017) · Zbl 1395.93262
[24] Yang, X. Q.; Yin, S., Robust global identification and output estimation for LPV dual-rate systems subjected to random output time-delays, IEEE Trans. Ind. Inform., 13, 6, 2876-2885, (2017)
[25] Xie, L.; Yang, H.; Huang, B., FIR model identification of multirate processes with random delays using EM algorithm, AIChE J., 59, 11, 4124-4132, (2013)
[26] Chen, F. W.; Garnier, H.; Gilson, M., Robust identification of continuous-time models with arbitrary time-delay from irregularly sampled data, J. Process Control, 25, 19-27, (2015)
[27] Feng, X. L.; Wen, C. L.; Park, J. H., Sequential fusion h-infinity filtering for multi-rate multi-sensor time-varying systems - a krein-space approach, IET Control Theory Appl., 11, 3, 369-381, (2017)
[28] Zhang, Y.; Wang, Z. D.; Zou, L., Fault detection filter design for networked multi-rate systems with fading measurements and randomly occurring faults, IET Control Theory Appl., 10, 5, 573-581, (2016)
[29] Chen, J.; Li, J.; Liu, Y. J., Gradient iterative algorithm for dual-rate nonlinear systems based on a novel particle filter, J. Frankl. Inst., 354, 11, 4425-4437, (2017) · Zbl 1380.93251
[30] Yan, W. L.; Du, C. L.; Pang, C. K., A general multirate approach for direct closed-loop identification to the nyquist frequency and beyond, Automatica, 53, 164-170, (2015) · Zbl 1371.93060
[31] Shao, Q. M.; Cinar, A., System identification and distributed control for multi-rate sampled systems, J. Process Control, 34, 1-12, (2015)
[32] Zamani, M.; Bottegal, G.; Anderson, B. D.O., On the zero-freeness of tall multirate linear systems, IEEE Trans. Autom. Control, 61, 11, 3606-3611, (2016) · Zbl 1359.93169
[33] Zhang, Y.; Wang, Z. D.; Zou, L.; Fang, H. J., Event-based finite-time filtering for multirate systems with fading measurements, IEEE Trans. Aerosp. Electron. Syst., 53, 3, 1431-1441, (2017)
[34] Ding, F.; Meng, D. D.; Dai, J. Y.; Li, Q. S.; Alsaedi, A.; Hayat, T., Least squares based iterative parameter estimation algorithm for stochastic dynamical systems with ARMA noise using the model equivalence, Int. J. Control Autom. Syst., 16, 2, 630-639, (2018)
[35] Wang, Y. J.; Ding, F.; Xu, L., Some new results of designing an IIR filter with colored noise for signal processing, Digit. Signal Process., 72, 44-58, (2018)
[36] Ma, P.; Ding, F.; Zhu, Q. M., Decomposition-based recursive least squares identification methods for multivariate pseudolinear systems using the multi-innovation, Int. J. Syst. Sci., 49, 5, 920-928, (2018)
[37] Zhang, X.; Xu, L., Combined state and parameter estimation for a bilinear state space system with moving average noise, J. Frankl. Inst., 355, 6, 3079-3103, (2018) · Zbl 1395.93174
[38] Zhang, X.; Ding, F.; Alsaadi, F. E.; Hayat, T., Recursive parameter identification of the dynamical models for bilinear state space systems, Nonlin. Dyn., 89, 4, 2415-2429, (2017) · Zbl 1377.93062
[39] Chen, M. T.; Ding, F.; Xu, L.; Hayat, T.; Alsaedi, A., Iterative identification algorithms for bilinear-in-parameter systems with autoregressive moving average noise, J. Frankl. Inst., 354, 17, 7885-7898, (2017) · Zbl 1380.93271
[40] Wang, X.; Quost, B.; Chazot, J. D.; Antoni, J., Estimation of multiple sound sources with data and model uncertainties using the EM and evidential EM algorithms, Mech. Syst. Signal Process., 66-67, 159-177, (2016)
[41] Chung, Y.; Lindsay, B. G., Convergence of the EM algorithm for continuous mixing distributions, Stat. Probab. Lett., 96, 190-195, (2015) · Zbl 1396.62087
[42] Ma, J. X.; Chen, J.; Xiong, W. L., Expectation maximization estimation algorithm for hammerstein models with non-gaussian noise and random time delay from dual-rate sampled-data, Digital Signal Process., 73, 135-144, (2018)
[43] Cao, Y.; Li, P.; Zhang, Y., Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing, Futur. Gener. Comput. Syst., 88, 279-283, (2018)
[44] Zhang, Y. Z.; Cao, Y.; Wen, Y. H.; Liang, L.; Zou, F., Optimization of information interaction protocols in cooperative vehicle-infrastructure systems, Chin. J. Electron., 27, 2, 439-444, (2018)
[45] Li, P.; Li, R. X.; Cao, Y.; Xie, G., Multi-objective sizing optimization for island microgrids using triangular aggregation model and levy-harmony algorithm, IEEE Trans. Ind. Inform., 14, 8, 3495-3505, (2018)
[46] Li, P.; Dargaville, R.; Cao, Y., Storage aided system property enhancing and hybrid robust smoothing for large-scale PV systems, IEEE Trans. Smart Grid, 8, 6, 2871-2879, (2017)
[47] Cao, Y.; Ma, L. C.; Xiao, S., Standard analysis for transfer delay in CTCS-3, Chin. J. Electron., 26, 5, 1057-1063, (2017)
[48] Wu, C. F.J., On the convergence properties of the EM algorithm, Ann. Stat., 11, 1, 95-103, (1983) · Zbl 0517.62035
[49] Liu, F., A note on marcinkiewicz integrals associated to surfaces of revolution, J. Aust. Math. Soc., 104, 3, 380-402, (2018) · Zbl 1395.42036
[50] Liu, F.; Wu, H. X., A note on the endpoint regularity of the discrete maximal operator, P. Am. Math. Soc., 147, 2, 583-596, (2019) · Zbl 1405.42036
[51] Liu, F., A note on Marcinkiewicz integrals associated to surfaces of revolution, J. Aust. Math. Soc., 104, 3, 380-402, (2018) · Zbl 1395.42036
[52] Liu, F.; Wu, H. X., Singular integrals related to homogeneous mappings in triebel-lizorkin spaces, J. Math. Inequal., 11, 4, 1075-1097, (2017) · Zbl 1380.42013
[53] Geng, F. Z.; Qian, S. P., An optimal reproducing kernel method for linear nonlocal boundary value problems, Appl. Math. Lett., 77, 49-56, (2018) · Zbl 1380.65129
[54] Li, X. Y.; Wu, B. Y., A new reproducing kernel collocation method for nonlocal fractional boundary value problems with non-smooth solutions, Appl. Math. Lett., 86, 194-199, (2018)
[55] Liu, F., On the triebel-lizorkin space boundedness of marcinkiewicz integrals along compound surfaces, Math. Inequal. Appl., 20, 2, 515-535, (2017) · Zbl 1367.42007
[56] Yin, C. C.; Zhao, J. S., Nonexponential asymptotics for the solutions of renewal equations, with applications, J. Appl. Probab., 43, 3, 815-824, (2008) · Zbl 1125.60090
[57] Gao, H. L.; Yin, C. C., The perturbed sparre andersen model with a threshold dividend strategy, J. Comput. Appl. Math., 220, 1-2, 394-408, (2008) · Zbl 1221.91030
[58] Yin, C. C.; Wang, C. W., The perturbed compound poisson risk process with investment and debit interest, Methodol. Comput. Appl. Probab., 12, 3, 391-413, (2010) · Zbl 1231.91255
[59] Yin, C. C.; Yuen, K. C., Optimality of the threshold dividend strategy for the compound poisson model, Stat. Probab. Lett., 81, 12, 1841-1846, (2011) · Zbl 1225.91030
[60] Yin, C. C.; Wen, Y. Z., Exit problems for jump processes with applications to dividend problems, J. Comput. Appl. Math., 245, 30-52, (2013) · Zbl 1267.91076
[61] Yin, C. C.; Wen, Y. Z., Optimal dividend problem with a terminal value for spectrally positive levy processes, Insur. Math. Econ., 53, 3, 769-773, (2013) · Zbl 1290.91176
[62] Ji, Y.; Ding, F., Multiperiodicity and exponential attractivity of neural networks with mixed delays, Circ. Syst. Signal Process., 36, 6, 2558-2573, (2017) · Zbl 1370.92019
[63] Zhao, N.; Chen, Y.; Liu, R.; Wu, M. H.; Xiong, W., Monitoring strategy for relay incentive mechanism in cooperative communication networks, Comput. Electr. Eng., 60, 14-29, (2017)
[64] Gong, P. C.; Wang, W. Q.; Li, F. C.; Cheung, H., Sparsity-aware transmit beamspace design for FDA-MIMO radar, Signal Process., 144, 99-103, (2018)
[65] Rao, Z. H.; Zeng, C. Y.; Wu, M. H., Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network, KSII Trans. Internet Inf. Syst., 12, 1, 413-435, (2018)
[66] Zhao, N.; Liu, R.; Chen, Y.; Wu, M.; Jiang, Y.; Xiong, W.; Liu, C., Contract design for relay incentive mechanism under dual asymmetric information in cooperative networks, Wirel. Netw., 24, 8, 3029-3044, (2018)
[67] Pan, J.; Li, W.; Zhang, H. P., Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control, Int. J. Control Autom. Syst., 16, 6, 2878-2887, (2018)
[68] Li, X.; Zhu, D. Q., An improved SOM neural network method to adaptive leader-follower formation control of AUVs, IEEE T. Ind. Electron., 65, 10, 8260-8270, (2018)
[69] Pan, J.; Ma, H.; Jiang, X., Adaptive gradient-based iterative algorithm for multivariate controlled autoregressive moving average systems using the data filtering technique, Complexity, 1-11, (2018) · Zbl 1398.93348
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.