Gee, Toby; Kisin, Mark The Breuil-Mézard conjecture for potentially Barsotti-Tate representations. (English) Zbl 1408.11033 Forum Math. Pi 2, Paper No. e1, 56 p. (2014). Summary: We prove the Breuil-Mézard conjecture for two-dimensional potentially Barsotti-Tate representations of the absolute Galois group \(G_{K}\), \(K\) a finite extension of \(\mathbb{Q}_{p}\), for any \(p>2\) (up to the question of determining precise values for the multiplicities that occur). In the case that \(K/\mathbb{Q}_{p}\) is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serre’s conjecture, proving a variety of results including the Buzzard-Diamond-Jarvis conjecture. Cited in 30 Documents MSC: 11F33 Congruences for modular and \(p\)-adic modular forms PDF BibTeX XML Cite \textit{T. Gee} and \textit{M. Kisin}, Forum Math. Pi 2, Paper No. e1, 56 p. (2014; Zbl 1408.11033) Full Text: DOI arXiv References: [1] DOI: 10.1007/978-3-8348-0352-8_2 · doi:10.1007/978-3-8348-0352-8_2 [2] DOI: 10.4310/MRL.2006.v13.n5.a10 · Zbl 1185.11030 · doi:10.4310/MRL.2006.v13.n5.a10 [3] DOI: 10.1007/s00208-014-1041-7 · Zbl 1328.14035 · doi:10.1007/s00208-014-1041-7 [4] Barnet-Lamb, Ann. Sci. Éc. Norm. Supér. 47 pp 165– (2014) [5] DOI: 10.1017/S147474801300011X · Zbl 1318.11061 · doi:10.1017/S147474801300011X [6] Vignéras, Compositio Math. 72 pp 33– (1989) [7] DOI: 10.4007/annals.2014.179.2.3 · Zbl 1310.11060 · doi:10.4007/annals.2014.179.2.3 [8] DOI: 10.1017/CBO9780511721267.006 · doi:10.1017/CBO9780511721267.006 [9] DOI: 10.1007/BFb0086557 · doi:10.1007/BFb0086557 [10] DOI: 10.2977/PRIMS/31 · Zbl 1264.11044 · doi:10.2977/PRIMS/31 [11] Darmon, Elliptic Curves, Modular Forms & Fermat’s Last Theorem (Hong Kong, 1993) pp 2– (1997) [12] DOI: 10.1090/pspum/009/0224710 · doi:10.1090/pspum/009/0224710 [13] DOI: 10.1007/s00208-012-0893-y · Zbl 1339.11064 · doi:10.1007/s00208-012-0893-y [14] DOI: 10.1007/s10240-008-0016-1 · Zbl 1169.11020 · doi:10.1007/s10240-008-0016-1 [15] DOI: 10.1017/S1474748012000023 · Zbl 1269.11054 · doi:10.1017/S1474748012000023 [16] DOI: 10.4310/MRL.2013.v20.n1.a6 · Zbl 1298.11038 · doi:10.4310/MRL.2013.v20.n1.a6 [17] Carayol, Ann. Sci. Éc. Norm. Supér. (4) 19 pp 409– (1986) [18] Taylor, Doc. Math. pp 729– (2006) [19] DOI: 10.1215/00127094-1593326 · Zbl 1297.11028 · doi:10.1215/00127094-1593326 [20] DOI: 10.1090/S0894-0347-2011-00721-2 · Zbl 1282.11051 · doi:10.1090/S0894-0347-2011-00721-2 [21] DOI: 10.1090/S0894-0347-2010-00689-3 · Zbl 1269.11045 · doi:10.1090/S0894-0347-2010-00689-3 [22] DOI: 10.1215/00127094-2010-052 · Zbl 1227.11070 · doi:10.1215/00127094-2010-052 [23] DOI: 10.1215/S0012-7094-02-11522-1 · Zbl 1042.11030 · doi:10.1215/S0012-7094-02-11522-1 [24] Serre, Graduate Texts in Mathematics, Vol. 42 (1977) [25] DOI: 10.1007/s11856-008-1035-9 · Zbl 1197.11063 · doi:10.1007/s11856-008-1035-9 [26] DOI: 10.1112/S0010437X09004175 · Zbl 1259.11060 · doi:10.1112/S0010437X09004175 [27] DOI: 10.1112/plms/pdt056 · Zbl 1334.11047 · doi:10.1112/plms/pdt056 [28] Matsumura, Cambridge Studies in Advanced Mathematics (1989) [29] Labesse, On the Stabilization of the Trace formula pp 429– (2011) [30] Kisin, Proceedings of the International Congress of Mathematicians pp 294– (2010) [31] DOI: 10.4007/annals.2009.170.1085 · Zbl 1201.14034 · doi:10.4007/annals.2009.170.1085 [32] DOI: 10.1090/S0894-0347-09-00628-6 · Zbl 1251.11045 · doi:10.1090/S0894-0347-09-00628-6 [33] DOI: 10.1090/S0894-0347-07-00576-0 · Zbl 1205.11060 · doi:10.1090/S0894-0347-07-00576-0 [34] DOI: 10.4007/annals.2009.169.229 · Zbl 1196.11076 · doi:10.4007/annals.2009.169.229 [35] DOI: 10.1007/BF01405203 · Zbl 0275.14011 · doi:10.1007/BF01405203 [36] Harris, Annals of Mathematics Studies, Vol. 151 (2001) [37] DOI: 10.1090/S0894-0347-2013-00775-4 · Zbl 1288.11045 · doi:10.1090/S0894-0347-2013-00775-4 [38] DOI: 10.2140/ant.2012.6.1537 · Zbl 1282.11057 · doi:10.2140/ant.2012.6.1537 [39] DOI: 10.1215/00127094-1507376 · Zbl 1295.11043 · doi:10.1215/00127094-1507376 [40] DOI: 10.1007/s00222-010-0284-5 · Zbl 1280.11029 · doi:10.1007/s00222-010-0284-5 [41] DOI: 10.1007/s00208-010-0545-z · Zbl 1276.11085 · doi:10.1007/s00208-010-0545-z [42] DOI: 10.1112/S0010437X11005264 · Zbl 1259.11058 · doi:10.1112/S0010437X11005264 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.