×

Function-on-function regression with thousands of predictive curves. (English) Zbl 1408.62075

Summary: With the advance of technology, thousands of curves can be simultaneously recorded by electronic devices, such as simultaneous EEG and fMRI data. To study the relationship between these curves, we consider a functional linear regression model with functional response and functional predictors, where the number of predictive curves is much larger than the sample size. The high dimensionality of this problem poses theoretical and practical difficulties for the existing methods, including estimation inconsistency and prediction inaccuracy. Motivated by the simultaneous EEG and fMRI data, we focus on models with sparsity structures where most of the coefficient functions of the predictive curves have small norms. To take advantage of this sparsity structure and the smoothness of coefficient functions, we propose a simultaneous sparse-smooth penalty which is incorporated into a generalized functional eigenvalue problem to obtain estimates of the model. We establish the asymptotic upper bounds for the prediction and estimation errors as both the sample size and the number of predictive curves go to infinity. We implement the proposed method in the \(\mathsf{R}\) package \(\mathsf{FRegSigComp}\). Simulation studies show that the proposed method has good predictive performance for models with sparsity structures. The proposed method is applied to a simultaneous EEG and fMRI dataset.

MSC:

62G08 Nonparametric regression and quantile regression
62H25 Factor analysis and principal components; correspondence analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Ashburner, G. Barnes, C. Chen, J. Daunizeau, G. Flandin, K. Friston, S. Kiebel, J. Kilner, V. Litvak, R. Moran, et al., Spm12 Manual, Wellcome Trust Centre for Neuroimaging, London, 2014.; J. Ashburner, G. Barnes, C. Chen, J. Daunizeau, G. Flandin, K. Friston, S. Kiebel, J. Kilner, V. Litvak, R. Moran, et al., Spm12 Manual, Wellcome Trust Centre for Neuroimaging, London, 2014.
[2] Brodmann, K., Vergleichende Lokalisationslehre Der Grosshirnrinde in Ihren Prinzipien Dargestellt Auf Grund Des Zellenbaues (1909), Barth
[3] Brosch, M.; Budinger, E.; Scheich, H., Stimulus-related gamma oscillations in primate auditory cortex, J. Neurophysiol., 87, 2715-2725 (2002)
[4] Brown, P. J.; Fearn, T.; Vannucci, M., Bayesian wavelet regression on curves with application to a spectroscopic calibration problem, J. Amer. Statist. Assoc., 96, 398-408 (2001) · Zbl 1022.62027
[5] Cardot, H.; Ferraty, F.; Sarda, P., Functional linear model, Statist. Probab. Lett., 45, 11-22 (1999) · Zbl 0962.62081
[6] Chiou, J. M.; Yang, Y. F.; Chen, Y. T., Multivariate functional linear regression and prediction, J. Multivariate Anal., 146, 301-312 (2016) · Zbl 1336.62158
[7] Delaigle, A.; Hall, P., Methodology and theory for partial least squares applied to functional data, Ann. Statist., 40, 322-352 (2012) · Zbl 1246.62084
[8] Ding, S. L.; Van Hoesen, G. W.; Cassell, M. D.; Poremba, A., Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers, J. Comp. Neurol., 514, 595-623 (2009)
[9] Edwards, E.; Soltani, M.; Deouell, L. Y.; Berger, M. S.; Knight, R. T., High gamma activity in response to deviant auditory stimuli recorded directly from human cortex, J. Neurophysiol., 94, 4269-4280 (2005)
[10] Engel, A. K.; König, P.; Kreiter, A. K.; Singer, W., Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex, Science, 252, 1177-1179 (1991)
[11] Fries, P.; Reynolds, J. H.; Rorie, A. E.; Desimone, R., Modulation of oscillatory neuronal synchronization by selective visual attention, Science, 291, 1560-1563 (2001)
[12] Goldsmith, J.; Crainiceanu, C. M.; Caffo, B.; Reich, D., Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements, J. Roy. Statist. Soc. Ser. C, 61, 453-469 (2012)
[13] Gray, C. M.; König, P.; Engel, A. K.; Singer, W., Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature, 338, 334-337 (1989)
[14] Huster, R. J.; Debener, S.; Eichele, T.; Herrmann, C. S., Methods for simultaneous EEG-fMRI: An introductory review, J. Neurosci., 32, 6053-6060 (2012)
[15] Ivanescu, A. E.; Staicu, A. M.; Scheipl, F.; Greven, S., Penalized function-on-function regression, Comput. Statist., 30, 539-568 (2015) · Zbl 1317.65037
[16] James, G. M., Generalized linear models with functional predictors, J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 411-432 (2002) · Zbl 1090.62070
[17] Kong, D.; Xue, K.; Yao, F.; Zhang, H. H., Partially functional linear regression in high dimensions, Biometrika, 103, 147-159 (2016) · Zbl 1452.62500
[18] Lancaster, J. L.; Summerlin, J.; Rainey, L.; Freitas, C. S.; Fox, P. T., The Talairach Saemon, a database server for Talairach Atlas labels, Neuroimage, 5, S633 (1997)
[19] Lancaster, J. L.; Woldorff, M. G.; Parsons, L. M.; Liotti, M.; Freitas, C. S.; Rainey, L.; Kochunov, P. V.; Nickerson, D.; Mikiten, S. A.; Fox, P. T., Automated Talairach Atlas labels for functional brain mapping, Hum. Brain Mapp., 10, 120-131 (2000)
[20] Lian, H., Shrinkage estimation and selection for multiple functional regression, Statist. Sinica, 23, 51-74 (2013) · Zbl 1257.62041
[21] Luo, R.; Qi, X., Function-on-function linear regression by signal compression, J. Amer. Statist. Assoc., 112, 690-705 (2017)
[22] Luo, R.; Qi, X.; Wang, Y., Functional wavelet regression for linear function-on-function models, Electron. J. Stat., 10, 3179-3216 (2016) · Zbl 1353.62073
[23] Maldjian, J. A.; Laurienti, P. J.; Kraft, R. A.; Burdette, J. H., An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets, Neuroimage, 19, 1233-1239 (2003)
[24] Marx, B. D.; Eilers, P. H., Generalized linear regression on sampled signals and curves: A \(p\)-spline approach, Technometrics, 41, 1-13 (1999)
[25] Meyer, M. J.; Coull, B. A.; Versace, F.; Cinciripini, P.; Morris, J. S., Bayesian function-on-function regression for multilevel functional data, Biometrics, 71, 563-574 (2015) · Zbl 1419.62408
[26] Mitra Lab in Cold Spring Harbor Laboratory, Chronux analysis software, 2014. http://chronux.org/; Mitra Lab in Cold Spring Harbor Laboratory, Chronux analysis software, 2014. http://chronux.org/
[27] Morris, J. S.; Carroll, R. J., Wavelet-based functional mixed models, J. R. Stat. Soc. Ser. B Stat. Methodol., 68, 179-199 (2006) · Zbl 1110.62053
[28] Müller, H.-G.; Stadtmüller, U., Generalized functional linear models, Ann. Statist., 33, 774-805 (2005) · Zbl 1068.62048
[29] Ramnani, N.; Owen, A. M., Anterior prefrontal cortex: Insights into function from anatomy and neuroimaging, Nat. Rev. Neurosci., 5, 184-194 (2004)
[30] Ramsay, J. O.; Dalzell, C., Some tools for functional data analysis, J. R. Stat. Soc. Ser. B Stat. Methodol., 53, 539-572 (1991) · Zbl 0800.62314
[31] Ramsay, J. O.; Silverman, B. W., Functional Data Analysis (2005), Springer: Springer New York · Zbl 1079.62006
[32] Rasmussen, C. E.; Williams, C. K.I., Gaussian Processes for Machine Learning (2005), The MIT Press
[33] Ratcliffe, S. J.; Heller, G. Z.; Leader, L. R., Functional data analysis with application to periodically stimulated fœtal heart rate data, ii: Functional logistic regression, Statist. Med., 21, 1115-1127 (2002)
[34] Reiss, P. T.; Ogden, R. T., Functional principal component regression and functional partial least squares, J. Amer. Statist. Assoc., 102, 984-996 (2007) · Zbl 1469.62237
[35] Scheipl, F.; Staicu, A. M.; Greven, S., Functional additive mixed models, J. Comput. Graph. Statist., 24, 477-501 (2015)
[36] Walz, J. M.; Goldman, R. I.; Carapezza, M.; Muraskin, J.; Brown, T. R.; Sajda, P., Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem, J. Neurosci., 33, 19212-19222 (2013)
[37] Wang, W., Linear mixed function-on-function regression models, Biometrics, 70, 794-801 (2014) · Zbl 1393.62106
[38] Womelsdorf, T.; Fries, P.; Mitra, P. P.; Desimone, R., Gamma-band synchronization in visual cortex predicts speed of change detection, Nature, 439, 733-736 (2006)
[39] Wu, S.; Müller, H.-G., Response-adaptive regression for longitudinal data, Biometrics, 67, 852-860 (2011) · Zbl 1226.62068
[40] Yao, F.; Müller, H.-G.; Wang, J. L., Functional linear regression analysis for longitudinal data, Ann. Statist., 33, 2873-2903 (2005) · Zbl 1084.62096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.