×

The Filon construct for moving dislocations. (English) Zbl 1408.74013

Summary: Filon’s construct, originally developed for plane isotropic linear elastostatics, examines the difference between solutions to the same boundary value problem but for two different values of the elastic moduli, and relates the difference solution to one occurring in a corresponding stationary dislocation problem. This paper generalises the result to three-dimensional linear elastodynamics with particular reference to moving dislocations. Also studied is the inverse procedure which derives the pair of elastodynamical problems from a given distribution of dislocations. Body-forces and an auxiliary plastic distortion tensor are novel and essential features of the argument. Specialisation to the static and quasi-static theories is straightforward. The inverse Filon construct is illustrated by the stationary edge dislocation and uniformly moving screw dislocation in a homogeneous isotropic linear elastic whole space.

MSC:

74B05 Classical linear elasticity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Filon LNG (1922) On stresses in multiply-connected plates. In: Report of the eighty-ninth meeting of the British association for the advancement of science (1921). London (1922) pp 305-316
[2] Muskhelishvili N (1963) Some basic problems of the mathematical theory of elasticity (trans: Radok JRM). Groningen, Noordhoff · Zbl 0124.17404
[3] Boley BA, Weiner JH (1960) Theory of thermal stresses. Wiley, New York · Zbl 0095.18407
[4] Acharya, A; Knops, RJ, On the three-dimensional filon construct for dislocations, Int J Eng Sci, 59, 6-26, (2012) · Zbl 1423.74088 · doi:10.1016/j.ijengsci.2012.03.010
[5] Knops, RJ, Filon’s construct for dislocations and related topics, J Eng Math, 46, 331-354, (2003) · Zbl 1052.74007 · doi:10.1023/A:1025097727226
[6] Kosevich, AM, The deformation field in an isotropic elastic medium containing moving dislocations, Soviet Phys JETP, 15, 108-115, (1962) · Zbl 0124.46303
[7] Kosevich, AM, Dynamical theory of dislocations, Soviet Phys Uspekhi, 7, 837-854, (1965) · doi:10.1070/PU1965v007n06ABEH003688
[8] Acharya, A, A model of crystal plasticity based on the theory of continuously distributed dislocations, J Mech Phys Sols, 49, 761-784, (2001) · Zbl 1017.74010 · doi:10.1016/S0022-5096(00)00060-0
[9] Kröner E (1981) Continuum theory of defects. Course 3. Session 35. In: Balian P, Kleman M, Poirier JP (eds) Physics of defects. Les Houches Summer School, 1980. North-Holland Publ. Co, Amsterdam, pp 217-315
[10] Eshelby, JD; Seitz, F (ed.); Turnball, D (ed.), The continuum theory of lattice defects, No. 3, 79-144, (1956), New York
[11] Acharya A, Knops RJ, Sivalogathan J (2017) Basic structure of linear dislocation field theory (to appear)
[12] Michell, JH, On the direct determination of stress in an elastic solid, with application to the theory of plates, Proc Lond Maths Soc, 31, 100-124, (1899) · JFM 30.0720.01 · doi:10.1112/plms/s1-31.1.100
[13] Michell, JH, The transmission of stress across a plane of discontinuity in an isotropic elastic solid, and the potential solutions for a plane boundary, Proc Lond Maths Soc, 31, 183-192, (1899) · JFM 30.0719.02 · doi:10.1112/plms/s1-31.1.183
[14] Volterra VE (1960) Sur les distorsions des corps élastiques. (théorie et applications.) Mémorial des sciences mathématiques, vol 147. Gauthier-Villars, Paris · Zbl 0097.17402
[15] Gurtin, ME; Flügge, S (ed.), The linear theory of elasticity, No. VIa/2, 1-295, (1972), Berlin
[16] Love AEH (1927) A treatise on the mathematical theory of elasticity, 4th edn. Cambridge University Press, Cambridge · JFM 53.0752.01
[17] Maxwell JC (1869) Scientific Papers, II. Dover Publications, New York
[18] Lévy, M, Sur la légimaté de la régle dite du trapèze dans l’étude de la résistance des barrages en maconnerie, Comptes Rend Acad Sci Paris, 126, 1235, (1898) · JFM 29.0687.02
[19] Timpe A (1905) Probleme der Spannungsverteilung in ebenen systemen, einfach delöst und Hilfe der Airyschen Funktion. Doctoral Dissertation. Göttingen, Leipzig, Teubner
[20] Carlson, DE, Dependence of linear elastic solutions on the elastic constants. I. dependence on poisson’s ratio in elastostatics, J Elast, 1, 145-151, (1971) · doi:10.1007/BF00046465
[21] Carlson, DE, Dependence of linear elastic solutions on the elastic constants. II. dependence on shear modulus in elastostatics, J Elast, 2, 129-134, (1972) · doi:10.1007/BF00046062
[22] Carlson, DE, Dependence of linear elastic solutions on the elastic constants. III. elastodynamics, J Elast, 3, 169-178, (1973) · doi:10.1007/BF00052891
[23] Dundurs, J, Load and self-stresses in an elastic body, J Elast, 2, 211-213, (1972) · doi:10.1007/BF00046059
[24] Markenscoff, X, Stress independence of poisson’s ratio and divergence free body-forces, J Elast, 45, 65-74, (2006) · Zbl 1120.74009 · doi:10.1007/s10659-005-9040-2
[25] Bramble, JH; Payne, LE, Effect of error in measurement of elastic constants on the solutions of problems in classical elasticity, J Res Nat Bureau Stand, 67B, 157-167, (1963) · Zbl 0114.15801 · doi:10.6028/jres.067B.013
[26] Knops RJ, Payne LE (1971) Uniqueness theorems in linear elasticity, vol 19. Springer tracts in natural philosophy. Springer, Berlin · Zbl 0224.73016
[27] Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Kreiger Publishing Company, Malabar, FL · Zbl 1365.82001
[28] Achenbach JD (1975) Wave propagation in elastic solids. North-Holland, Amsterdam · Zbl 0268.73005
[29] Eason, G; Fulton, J; Sneddon, IN, The generation of waves in an infinite elastic solid by variable body forces, Phil Trans R Soc Lond, A248, 575-607, (1956) · Zbl 0070.19407 · doi:10.1098/rsta.1956.0010
[30] Freund, LB, Wave motion in an elastic solid due to a non-uniformly moving line load, Q Appl Math, 30, 271-281, (1972) · Zbl 0284.73018 · doi:10.1090/qam/99727
[31] Wu, K-C, Moving line force in an anisotropic elastic solid, Proc R Soc Lond, A458, 1761-1772, (2002) · Zbl 1056.74029 · doi:10.1098/rspa.2001.0940
[32] Eringen AC, Suhubi ES (1975) Elastodynamics, vol II. Linear theory. Academic Press, New York · Zbl 0344.73036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.