zbMATH — the first resource for mathematics

Passive control of the flow around a hemisphere using porous media. (English) Zbl 1408.76506
Summary: In this work, a passive flow control study is proposed in order to regularize the flow dynamics around a hemisphere at a low and a higher Reynolds number in the wake transition regime. This passive control is realized by covering the projected curved surface of the hemisphere with a porous coating. The presence of such porous medium modifies the boundary conditions at the body-fluid interface, allowing a non-zero velocity to settle in this region. This phenomenon smoothes the global flow dynamics and leads, in particular, to a decrease of the energy dissipation and the aerodynamic force. In this paper, the flow control study is carried out for several configurations using a vortex-penalization technique which allows to easily model solid-fluid-porous media without prescribing any boundary condition.

76S05 Flows in porous media; filtration; seepage
76D55 Flow control and optimization for incompressible viscous fluids
Full Text: DOI
[1] Wiplier, O.; Ehrenstein, U., Numerical simulation of linear and nonlinear disturbance evolution in a boundary layer with compliant walls, J. Fluids Struct., 14, 2, 157-182, (2000)
[2] Davies, C.; Carpenter, P., Instabilities in a plane channel flow between compliant walls, J. Fluid Mech., 352, 205-243, (1997) · Zbl 0903.76029
[3] Ehrenstein, U., On the linear stabilities of channel flow over ribelets, Phys. Fluids, 8, 3194, (1996) · Zbl 1027.76561
[4] Luchini, P., Asymptotic analysis of laminar boundary-layer flow over finely grooved surfaces, Eur. J. Mech. B Fluids, 14, 2, (1995) · Zbl 0835.76024
[5] Bearman, P.; Branković, M., Experimental studies of passive control of vortex-induced vibration, Eur. J. Mech. B Fluids, 23, 9-15, (2004) · Zbl 1045.76500
[6] Zadravkovich, M., Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding, J. Wind Eng. Ind. Aerodyn., 7, 2, 145-189, (1981)
[7] Wong, H., A means of controlling bluff body separation, J. Ind. Aerodyn., 4, 2, 183-201, (1979)
[8] Bruneau, C.-H.; Mortazavi, I., Passive control of the flow around a square cylinder using porous media, Internat. J. Numer. Methods Fluids, 46, 415-433, (2004) · Zbl 1060.76035
[9] Achdou, Y.; Pironneau, O.; Valentin, F., Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys., 147, 187-218, (1998) · Zbl 0917.76013
[10] Pluvinage, F.; Kourta, A.; Bottaro, A., Instabilities in the boundary layer over a permeable, compliant wall, Phys. Fluids, 26, (2014)
[11] Mehta, R.; Pallis, J. M., The aerodynamics of a tennis ball, Sports Eng., 4, 4, 177-189, (2001)
[12] Vaseashta, A.; Dimova-Malinovska, D., Nanostructured and nanoscale devices, sensors and detectors, Sci. Technol. Adv. Mater., 6, 312-318, (2005)
[13] Gosselin, F., Mécanismes d’intéractions fluide-structure entre écoulements et végétation, (2009), Ecole Polytechnique Palaiseau, France, (Ph.D. thesis)
[14] Venkataraman, D.; Bottaro, A., Numerical modeling of flow control on a symmetric aerofoil via a porous compliant coating, Phys. Fluids, 24, (2012)
[15] Secomb, T.; Hsu, R.; Pries, A., Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells, Biorheology, 38, 143-150, (2001)
[16] Bruneau, C.-H.; Mortazavi, I., Control of vortex shedding around a pipe section using a porous sheat, J. Offshore Polar Eng., 16, (2006)
[17] Bruneau, C.-H.; Gilliéron, P.; Mortazavi, I., Passive control around a two-dimensional square back ahmed body using porous media, J. Fluids Eng., 130, 6, (2008)
[18] Mimeau, C.; Mortazavi, I.; Cottet, G.-H., Passive flow control around a semi-circular cylinder using porous coatings, Int. J. Flow Control, 6, 43-60, (2014)
[19] Cottet, G.-H.; Koumoutsakos, P., Vortex methods - theory and practice, (2000), Cambridge University Press
[20] Koumoutsakos, P.; Leonard, A., High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296, 1-38, (1995) · Zbl 0849.76061
[21] Caltagirone, J. P., Sur l’intéraction fluide-milieu poreux: application au calcul des efforts exercés sur un obstacle par un fluide visqueux, C. R. Acad. Sci. Paris, 318, (1994) · Zbl 0795.76080
[22] Angot, P.; Bruneau, C.-H.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 497-520, (1999) · Zbl 0921.76168
[23] Kevlahan, N.; Ghidaglia, J. M., Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, Eur. J. Mech. B/Fluids, 20, 333-350, (2001) · Zbl 1020.76037
[24] Chorin, A. J., Numerical study of slighly viscous flow, J. Fluid Mech., 57, 785-796, (1973)
[25] Bergdorf, M.; Koumoutsakos, P., A Lagrangian particle-wavelet method, SIAM Multiscale Model. Simul., 5, 980-995, (2006) · Zbl 1122.65085
[26] Cottet, G.-H.; Etancelin, J.-M.; Perignon, F.; Picard, C., High order semi-Lagrangian particles for transport equations: numerical analysis and implementation issues, ESAIM Math. Model. Numer. Anal., 48, 1029-1064, (2014) · Zbl 1310.65134
[27] Mimeau, C.; Cottet, G.-H.; Mortazavi, I., Direct numerical simulation of 3D bluff-body flows by a vortex penalization method, Comput. Fluids, 136, 331-347, (2015) · Zbl 1390.76597
[28] Mimeau, C.; Gallizio, F.; Cottet, G.-H.; Mortazavi, I., Vortex penalization method for bluff body flows, Internat. J. Numer. Methods Fluids, 79, 55-83, (2015)
[29] Roos, F. W.; Willmarth, W. W., Some experimental results on sphere and disk drag, AIAA J., 9, 285-291, (1971)
[30] Johnson, T. A.; Patel, V. C., Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech., 378, 19-70, (1999)
[31] Tomboulides, A.; Orszag, A., Numerical investigation of transitional and weak turbulent flow past a sphere, J. Fluid Mech., 416, 45-73, (2000) · Zbl 1156.76419
[32] G.S. Constantinescu, K.D. Squires, LES and DES investigations of turbulent flow over a sphere., AIAA Paper 2000-0540, 2000. · Zbl 1113.76354
[33] Kim, D.; Choi, H., Laminar flow past a sphere rotating in the streamwise direction, J. Fluid Mech., 461, 365-386, (2002) · Zbl 1142.76425
[34] Ploumhans, P.; Winckelmans, G. S.; Salmon, J. K.; Leonard, A.; Warren, M. S., Vortex methods for direct numerical simulation of three-dimensional bluff body flows: applications to the sphere at \(\mathit{Re} = 300\), 500 and 1000, J. Comput. Phys., 178, 427-463, (2002) · Zbl 1045.76030
[35] Wu, J.; Faeth, G., Sphere wakes in still surroundings at intermediate Reynolds numbers, AIAA J., 31, 8, 1448-1455, (1993)
[36] E. Poon, G. Iaccarino, A. Ooi, M. Giacobello, Numerical studies of high Reynolds number flow past a stationary and rotating sphere, in: Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 2009.
[37] Campregher, R.; Militzer, J.; Mansur, S.; da Silveira Neto, A., Computations of the flow past a still sphere at moderate Reynolds numbers using an immersed boundary method, J. Braz. Soc. Mech. Sci. Eng., 31, 4, 344-352, (2009)
[38] Kim, D.; Choi, H., Laminar flow past a hemisphere, Phys. Fluids, 15, 8, 2457-2460, (2003) · Zbl 1186.76280
[39] Ruck, B.; Klausmann, K.; WackerRussell, T., The flow around circular cylinders partially coated with porous media, AIP Conf. Proc., 1453, 49-54, (2012)
[40] Poncet, P.; Hildebrand, R.; Cottet, G.-H.; Koumoutsakos, P., Spatially distributed control for optimal drag reduction of the flow past a circular cylinder, J. Fluid Mech., 599, 111-120, (2008) · Zbl 1151.76444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.