×

Similarity classes of integral \(\mathfrak p\)-adic matrices and representation zeta functions of groups of type \(\mathsf{A}_{2}\). (English) Zbl 1409.11071

Summary: We compute explicitly Dirichlet generating functions enumerating finite-dimensional irreducible complex representations of various \(p\)-adic analytic and adèlic profinite groups of type \(\mathsf{A}_2\). This has consequences for the representation zeta functions of arithmetic groups \(\Gamma \subset \mathbf{H}(k)\), where \(k\) is a number field and \(\mathbf{H}\) is a \(k\)-form of \(\mathrm{SL}_3\): assuming that \(\Gamma\) possesses the strong congruence subgroup property, we obtain precise, uniform estimates for the representation growth of \(\Gamma\). Our results are based on explicit, uniform formulae for the representation zeta functions of the \(p\)-adic analytic groups \(\mathrm{SL}_3(\mathfrak{o})\) and \(\mathrm{SU}_3(\mathfrak{o})\), where \(\mathfrak{o}\) is a compact discrete valuation ring of characteristic 0. These formulae build on our classification of similarity classes of integral \(\mathfrak{p}\)-adic \(3\times 3\) matrices in \(\mathrm{gl}_3(\mathfrak{o})\) and \(\mathrm{gu}_3(\mathfrak{o})\), where \(\mathfrak{o}\) is a compact discrete valuation ring of arbitrary characteristic. Organising the similarity classes by invariants which we call their shadows allows us to combine the Kirillov orbit method with Clifford theory to obtain explicit formulae for representation zeta functions.
In a different direction we introduce and compute certain similarity class zeta functions. Our methods also yield formulae for representation zeta functions of various finite subquotients of groups of the form \(\mathrm{SL}_3(\mathfrak{o})\), \(\mathrm{SU}_3(\mathfrak{o})\), \(\mathrm{GL}_3(\mathfrak{o})\), and \(\mathrm{GU}_3(\mathfrak{o})\), arising from the respective congruence filtrations; these formulae are valid in case that the characteristic of \(\mathfrak{o}\) is either 0 or sufficiently large. Analysis of some of these formulae leads us to observe \(p\)-adic analogues of ‘Ennola duality’.

MSC:

11M41 Other Dirichlet series and zeta functions
15A21 Canonical forms, reductions, classification
20C15 Ordinary representations and characters
20G05 Representation theory for linear algebraic groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aizenbud A. Avni N. , ’Representation growth and rational singularities of the moduli space of local systems’, Invent. Math. (2015). doi:10.1007/s00222-015-0614-8 · Zbl 1401.14057
[2] DOI: 10.4007/annals.2011.174.2.6 · Zbl 1244.20043
[3] DOI: 10.1016/j.crma.2010.02.019 · Zbl 1186.22018
[4] Avni N. , Klopsch B. , Onn U. Voll C. , ’Representation zeta functions of some compact \(p\) -adic analytic groups’, Zeta functions in algebra and geometry, Contemporary Mathematics 566 (American Mathematical Society, Providence, RI, 2012) 295–330. · Zbl 1281.22004
[5] DOI: 10.1215/00127094-1959198 · Zbl 1281.22005
[6] Avni
[7] DOI: 10.1080/00927870902747266 · Zbl 1176.15013
[8] Bass H. , Lubotzky A. , Magid A. R. Mozes S. , ’The proalgebraic completion of rigid groups’, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part II (Haifa, 2000), vol. 95 (2002) 19–58. · Zbl 1059.20036
[9] Bass H. , Milnor J. Serre J.-P. , ’Solution of the congruence subgroup problem for \({\mathrm SL}_{n}\;(n\geq 3)\) and \({\mathrm Sp}_{2n}\;(n\geq 2)\) ’, Inst. Hautes Études Sci. Publ. Math. (1967) 59–137.
[10] DOI: 10.1112/jlms/jds056 · Zbl 1275.20053
[11] DOI: 10.1007/BF01389016 · Zbl 0484.17004
[12] DOI: 10.1007/BF02566256 · Zbl 0395.14013
[13] Broer A. , ’Lectures on decomposition classes’, Representation theories and algebraic geometry, Mathematical and Physical Sciences 514 (Kluwer Academic Publishers, Dordrecht, 1998) 39–83. · Zbl 0940.17003
[14] Calegari F. Emerton M. , ’Completed cohomology–a survey’, Non-abelian fundamental groups and Iwasawa theory, London Mathematical Society Lecture Note Series 393 (Cambridge University Press, Cambridge, 2012) 239–257. · Zbl 1288.11056
[15] Conway J. H. , Curtis R. T. , Norton S P. , Parker R. A. Wilson R.A. , Atlas of finite groups (Oxford University Press, Eynsham, 1985). Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray. · Zbl 0568.20001
[16] Dieudonné J. , La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 5 (Springer, Berlin–Göttingen–Heidelberg, 1955). · Zbl 0067.26104
[17] Digne F. Michel J. , Representations of finite groups of Lie type, London Mathematical Society Student Texts 21 (Cambridge University Press, Cambridge, 1991). · Zbl 0815.20014
[18] Dixon J. D. , du Sautoy M. P. F. , Mann A. Segal D. , Analytic pro-p groups, 2nd edn, Cambridge Studies in Advanced Mathematics 61 (Cambridge University Press, Cambridge, 1999). · Zbl 0934.20001
[19] DOI: 10.2307/2661355 · Zbl 1006.11051
[20] Ennola V. , ’On the characters of the finite unitary groups’, Ann. Acad. Sci. Fenn. Ser. A I No. 323 (1963). · Zbl 0109.26001
[21] Geck M. , An introduction to algebraic geometry and algebraic groups, Oxford Graduate Texts in Mathematics 20 (Oxford University Press, Oxford, 2013). · Zbl 1268.14044
[22] DOI: 10.1016/j.jalgebra.2007.02.005 · Zbl 1161.20024
[23] DOI: 10.1080/00927870802545679 · Zbl 1201.20022
[24] DOI: 10.1112/blms/bdt090 · Zbl 1292.22006
[25] DOI: 10.1090/S0002-9947-1955-0072878-2
[26] DOI: 10.2307/1970342 · Zbl 0126.16704
[27] DOI: 10.1090/S0002-9947-1973-0338148-0
[28] Hrushovski
[29] Huppert B. , Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134 (Springer, Berlin–New York, 1967).
[30] Isaacs I. M. , Character theory of finite groups (AMS Chelsea Publishing, Providence, RI, 2006). · Zbl 1119.20005
[31] DOI: 10.1090/S0894-0347-05-00501-1 · Zbl 1092.20023
[32] DOI: 10.1016/j.jalgebra.2012.01.028 · Zbl 1255.15012
[33] Karpilovsky G. , The Schur multiplier, London Mathematical Society Monographs. New Series 2 (The Clarendon Press, Oxford University Press, New York, 1987). · Zbl 0619.20001
[34] Kawanaka N. , ’Generalized Gel’fand-Graev representations and Ennola duality’, Algebraic groups and related topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6 (North-Holland, Amsterdam, 1985) 175–206.
[35] DOI: 10.1007/s00209-004-0717-1 · Zbl 1065.22005
[36] Klopsch, Representation growth and representation zeta functions of groups, Note Mat. 33 pp 107– (2013)
[37] DOI: 10.1017/S0017089510000613 · Zbl 1255.11042
[38] Larsen, Representation growth of linear groups, J. Eur. Math. Soc. (JEMS) 10 pp 351– (2008) · Zbl 1142.22006
[39] Lazard M. , ’Groupes analytiques \(p\) -adiques’, Inst. Hautes Études Sci. Publ. Math. (1965) 389–603. · Zbl 0139.02302
[40] DOI: 10.1112/S0024611504014935 · Zbl 1077.20020
[41] DOI: 10.1007/BF02916715 · Zbl 1134.20056
[42] Macdonald I. G. , Symmetric functions and Hall polynomials, 2nd edn, Oxford Mathematical Monographs (The Clarendon Press, Oxford University Press, New York, 1995). · Zbl 0824.05059
[43] Matsumura H. , Commutative ring theory, 2nd edn, Cambridge Studies in Advanced Mathematics 8 (Cambridge University Press, Cambridge, 1989). · Zbl 0666.13002
[44] Mordell, On the evaluation of some multiple series, J. London Math. Soc. 33 pp 368– (1958) · Zbl 0081.27501
[45] Moreau, On the dimension of the sheets of a reductive Lie algebra, J. Lie Theory 18 pp 671– (2008) · Zbl 1155.22010
[46] Neukirch J. , Algebraic number theory, Grundlehren der Mathematischen Wissenschaften 322 (Springer, Berlin, 1999). · Zbl 0956.11021
[47] DOI: 10.1016/j.aim.2008.08.003 · Zbl 1185.20049
[48] Platonov V. Rapinchuk A. , Algebraic groups and number theory, Pure and Applied Mathematics 139 (Academic Press Inc., Boston, MA, 1994). · Zbl 0841.20046
[49] DOI: 10.1512/iumj.2015.64.5500 · Zbl 1328.15023
[50] Serre J.-P. , Linear representations of finite groups (Springer, New York-Heidelberg, 1977).
[51] Shalev A. , ’Applications of some zeta functions in group theory’, Zeta functions in algebra and geometry, Contemporary Mathematics 566 (American Mathematical Society, Providence, RI, 2012) 331–344. · Zbl 1260.20022
[52] DOI: 10.4153/CJM-1973-049-7 · Zbl 0264.20010
[53] DOI: 10.1016/j.jalgebra.2010.05.024 · Zbl 1216.20035
[54] DOI: 10.4153/CJM-1951-027-x · Zbl 0042.25602
[55] DOI: 10.1016/0021-8693(81)90193-9 · Zbl 0468.20038
[56] DOI: 10.1016/j.aim.2006.07.018 · Zbl 1124.20031
[57] Voll C. , ’Zeta functions of groups and rings – recent developments’, Groups St Andrews 2013 in St Andrews, London Mathematical Society Lecture Note Series 422 (Cambridge University Press, Cambridge, 2015) 469–492. · Zbl 1377.11103
[58] Weyl H. , The classical groups. Their invariants and representations, Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 1997). · Zbl 1024.20501
[59] DOI: 10.1007/BF02100009 · Zbl 0762.53063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.