Knudsen gas in flat tire. (English) Zbl 1409.60048

Summary: We consider random reflections (according to the Lambertian distribution) of a light ray in a thin variable width (but almost circular) tube. As the width of the tube goes to zero, properly rescaled angular component of the light ray position converges in distribution to a diffusion whose parameters (diffusivity and drift) are given explicitly in terms of the tube width.


60F17 Functional limit theorems; invariance principles
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
60G40 Stopping times; optimal stopping problems; gambling theory
60G42 Martingales with discrete parameter
60G44 Martingales with continuous parameter
60J05 Discrete-time Markov processes on general state spaces
60J25 Continuous-time Markov processes on general state spaces
Full Text: DOI arXiv Euclid


[1] Angel, O., Burdzy, K. and Sheffield, S. (2013). Deterministic approximations of random reflectors. Trans. Amer. Math. Soc.365 6367–6383. · Zbl 1408.37063
[2] Bálint, P., Chernov, N. and Dolgopyat, D. (2011). Limit theorems for dispersing billiards with cusps. Comm. Math. Phys.308 479–510. · Zbl 1241.37005
[3] Burdzy, K. and Tadić, T. (2017). Can one make a laser out of cardboard? Ann. Appl. Probab.27 1951–1991. · Zbl 1373.60080
[4] Burdzy, K. and Tadić, T. (2018). Random reflections in a high-dimensional tube. J. Theoret. Probab.31 466–493. · Zbl 1391.60098
[5] Chumley, T., Feres, R. and Zhang, H.-K. (2016). Diffusivity in multiple scattering systems. Trans. Amer. Math. Soc.368 109–148. · Zbl 1332.60134
[6] Comets, F., Popov, S., Schütz, G. M. and Vachkovskaia, M. (2009). Billiards in a general domain with random reflections. Arch. Ration. Mech. Anal.191 497–537. · Zbl 1186.37049
[7] Comets, F., Popov, S., Schütz, G. M. and Vachkovskaia, M. (2010). Quenched invariance principle for the Knudsen stochastic billiard in a random tube. Ann. Probab.38 1019–1061. · Zbl 1200.60091
[8] Cook, S. and Feres, R. (2012). Random billiards with wall temperature and associated Markov chains. Nonlinearity25 2503–2541. · Zbl 1248.37048
[9] Dingle, K., Lamb, J. S. W. and Lázaro-Camí, J.-A. (2013). Knudsen’s law and random billiards in irrational triangles. Nonlinearity26 369–388. · Zbl 1320.37026
[10] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence. Wiley, New York. · Zbl 0592.60049
[11] Feres, R. (2007). Random walks derived from billiards. In Dynamics, Ergodic Theory, and Geometry. Math. Sci. Res. Inst. Publ.54 179–222. Cambridge Univ. Press, Cambridge. · Zbl 1145.37009
[12] Feres, R. and Yablonsky, G. (2004). Knudsen’s cosine law and random billiards. Chem. Eng. Sci.59 1541–1556.
[13] Jerison, D. (2000). Locating the first nodal line in the Neumann problem. Trans. Amer. Math. Soc.352 2301–2317. · Zbl 0958.35028
[14] Katzenberger, G. S. (1991). Solutions of a stochastic differential equation forced onto a manifold by a large drift. Ann. Probab.19 1587–1628. · Zbl 0749.60053
[15] Knudsen, M. (1934). The Kinetic Theory of Gases: Some Modern Aspects. Methuen & Co., London. · JFM 60.1420.10
[16] Lapidus, M. L. and Niemeyer, R. G. (2010). Towards the Koch snowflake fractal billiard: Computer experiments and mathematical conjectures. In Gems in Experimental Mathematics. Contemp. Math.517 231–263. Amer. Math. Soc., Providence, RI. · Zbl 1222.37028
[17] Lapidus, M. L. and Niemeyer, R. G. (2013). Sequences of compatible periodic hybrid orbits of prefractal Koch snowflake billiards. Discrete Contin. Dyn. Syst.33 3719–3740. · Zbl 1364.28008
[18] Rudin, W.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.