×

A variable exponent nonlocal \(p(x)\)-Laplacian equation for image restoration. (English) Zbl 1409.94290

Summary: In this paper, we focus on the mathematical and numerical study of a variable exponent nonlocal \(p(X)\)-Laplacian equation for image denoising. Based on the Semigroup Theory, we prove the existence and uniqueness of solution for the proposed model. To illustrate the efficiency and effectiveness of our model, we provide the denoising experimental results as well we compare it with some existing models in the literature.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
35Q94 PDEs in connection with information and communication
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Edmunds, D. E.; Edmunds, J. R.D., Sobolev embeddings with variable exponent, Studia Math., 143, 3, 267-293 (2000) · Zbl 0974.46040
[2] Chang, S. G.; Yu, B.; Vetterli, M., Adaptive wavelet thresholding for image denoising and compression, IEEE Trans. Image Process., 9, 9, 1532-1546 (2000), URL http://dx.doi.org/10.1109/83.862633 · Zbl 0962.94028
[3] Alvarez, L.; Lions, P.-L.; Morel, J.-M., Image selective smoothing and edge detection by nonlinear diffusion. II, SIAM J. Numer. Anal., 29, 3, 845-866 (1992), URL http://dx.doi.org/10.1137/0729052 · Zbl 0766.65117
[4] Afraites, L.; Atlas, A.; Karami, F.; Meskine, D., Some class of parabolic systems applied to image processing, Discrete Contin. Dyn. Syst. Ser. B, 21, 6, 1671-1687 (2016), URL http://dx.doi.org/10.3934/dcdsb.2016017 · Zbl 1352.35214
[5] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12, 629-639 (1990)
[6] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 1-4, 259-268 (1992), Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991) · Zbl 0780.49028
[7] Chambolle, A.; Lions, P.-L., Image recovery via total variation minimization and related problems, Numer. Math., 76, 2, 167-188 (1997), URL http://dx.doi.org/10.1007/s002110050258 · Zbl 0874.68299
[8] Aboulaich, R.; Meskine, D.; Souissi, A., New diffusion models in image processing, Comput. Math. Appl., 56, 4, 874-882 (2008) · Zbl 1155.35389
[9] Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 4, 1383-1406 (2006), URL http://dx.doi.org/10.1137/050624522 · Zbl 1102.49010
[10] Gilboa, G.; Osher, S., Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6, 2, 595-630 (2007), URL http://dx.doi.org/10.1137/060669358 · Zbl 1140.68517
[11] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 3, 1005-1028 (2008), URL http://dx.doi.org/10.1137/070698592 · Zbl 1181.35006
[12] Elmoataz, O. L.A.; Desquesnes, X., Non-local morphological pdes and p-laplacian equation on graphs with applications in image processing and machine learning, IEEE J. Sel. Top. Sign. Proces., 6, 764-779 (2012)
[13] Jin, Y.; Jost, J.; Wang, G., A new nonlocal variational setting for image processing, Inverse Probl. Imaging, 9, 2, 415-430 (2015), URL http://dx.doi.org/10.3934/ipi.2015.9.415 · Zbl 1359.94036
[14] Yaroslavsky, L. P., (Digital picture processing. Digital picture processing, Springer Series in Information Sciences, vol. 9 (1985), Springer-Verlag: Springer-Verlag Berlin), xii+276, URL http://dx.doi.org/10.1007/978-3-642-81929-2, an introduction · Zbl 0585.94001
[15] Buades, A.; Coll, B.; Morel, J. M., A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4, 2, 490-530 (2005), URL http://dx.doi.org/10.1137/040616024 · Zbl 1108.94004
[16] Kindermann, S.; Osher, S.; Jones, P. W., Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4, 4, 1091-1115 (2005), URL http://dx.doi.org/10.1137/050622249 · Zbl 1161.68827
[17] Andreu, F.; Mazón, J. M.; Rossi, J. D.; Toledo, J., A nonlocal \(p\)-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions, SIAM J. Math. Anal., 40, 5, 1815-1851 (2008/2009), URL http://dx.doi.org/10.1137/080720991 · Zbl 1183.35034
[18] Diening, L., Maximal function on generalized Lebesgue spaces \(L^{p(\cdot)}\), Math. Inequal. Appl., 7, 2, 245-253 (2004), URL http://dx.doi.org/10.7153/mia-07-27 · Zbl 1071.42014
[19] Kováčik, J. R.O., On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\), Czechoslovak Math. J., 41(116), 4, 592-618 (1991) · Zbl 0784.46029
[20] Harjulehto, P.; Hästö, P., An overview of variable exponent Lebesgue and Sobolev spaces, (Future Trends in Geometric Function Theory. Future Trends in Geometric Function Theory, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 92 (2003), Univ. Jyväskylä, Jyväskylä), 85-93 · Zbl 1046.46028
[21] Samko, S., On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integral Transforms Spec. Funct., 16, 5-6, 461-482 (2005), URL http://dx.doi.org/10.1080/10652460412331320322 · Zbl 1069.47056
[22] Musielak, J., (Orlicz Spaces and Modular Spaces. Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034 (1983), Springer-Verlag: Springer-Verlag Berlin), iii+222, URL http://dx.doi.org/10.1007/BFb0072210 · Zbl 0557.46020
[23] Brezis, H.m., Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18, fasc. 1, 115-175 (1968), URL http://www.numdam.org/item?id=AIF_1968__18_1_115_0 · Zbl 0169.18602
[24] Diening, L.; Harjulehto, M. R.; Hästä, P., (Lebesgue and Sobolev spaces with variable exponents. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017 (2011), Springer: Springer Heidelberg), x+509, URL http://dx.doi.org/10.1007/978-3-642-18363-8 · Zbl 1222.46002
[25] Bénilan, P.; Crandall, M. G., Completely accretive operators, (Semigroup Theory and Evolution Equations (Delft, 1989). Semigroup Theory and Evolution Equations (Delft, 1989), Lecture Notes in Pure and Appl. Math., vol. 135 (1991), Dekker: Dekker New York), 41-75 · Zbl 0895.47036
[26] Li, F.; Li, Z.; Pi, L., Variable exponent functionals in image restoration, Appl. Math. Comput., 216, 3, 870-882 (2010), URL http://dx.doi.org/10.1016/j.amc.2010.01.094 · Zbl 1186.94010
[27] Bougleux, S.; Elmoataz, A.; Melkemi, M., Local and nonlocal discrete regularization on weighted graphs for image and mesh processing, Int. J. Comput. Vis., 84, 2, 220-236 (2009), URL https://doi.org/10.1007/s11263-008-0159-z · Zbl 1481.94008
[28] Guidotti, P.; Kim, Y.; Lambers, J., Image restoration with a new class of forward-backward-forward diffusion equations of Perona-Malik type with applications to satellite image enhancement, SIAM J. Imaging Sci., 6, 3, 1416-1444 (2013), URL http://dx.doi.org/10.1137/120882895 · Zbl 1282.35190
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.