×

Module-phase synchronization in hyperchaotic complex Lorenz system after modified complex projection. (English) Zbl 1410.37041

Summary: This paper studies the modified complex projective synchronization which has plural projective factors and is meaningful to complex systems, and applies this kind of synchronization in a hyperchaotic complex Lorenz system. Based on the proposed synchronization, we also study the hybrid synchronization which contains modified complex projection and module-phase synchronization because hybrid synchronization not only deal with the synchronization real part and imaginary part, respectively, but also take module and phase of complex system into consideration. Owing to it is difficult to design the controller directly, our work involve an intermediary system. The asymptotic convergence of the errors between the states is proven and the computer simulation results present the effectiveness of our method.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N35 Dynamical systems in control
34H10 Chaos control for problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ott, E.; Grebogi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 1196-1199, (1990) · Zbl 0964.37501
[2] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824, (1990) · Zbl 0938.37019
[3] Wang, G. R.; Yu, X. L.; Chen, S. G., Chaotic control synchronization and utilizing, (2001), National Defence Industry Press Beijing
[4] Wang, X. Y., Chaos in the complex nonlinearity system, (2003), Electronics Industry Press Beijing
[5] Chen, G. R.; Lü, J. H., Dynamical analyses control and synchronization of the Lorenz system family, (2003), Science Press Beijing
[6] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193-4196, (1997)
[7] Ho, M. C.; Hung, Y. C.; Chou, C. H., Phase and anti-phase synchronization of two chaotic systems by using active control, Phys. Lett. A, 296, 43-48, (2002) · Zbl 1098.37529
[8] Grassi, G.; Miller, D. A., Synchronizing chaotic systems up to an arbitrary scaling matrix via a single signal, Appl. Math. Comput., 218, 6118-6124, (2012) · Zbl 1246.65242
[9] Ma, T. D.; Fu, J.; Sun, Y., An improved impulsive control approach to robust lag synchronization between two different chaotic systems, Chin. Phys. B, 19, 090502, (2010) · Zbl 1274.93124
[10] González-Miranda, J. M., Generalized synchronization in directionally coupled systems with identical individual dynamics, Phys. Rev. E, 65, 0472021, (2002)
[11] Zheng, S.; Dong, G. G.; Bi, Q. S., A new hyperchaotic system and its synchronization, Appl. Math. Comput., 215, 3192-3200, (2010) · Zbl 1188.34051
[12] Liu, Z. R.; Chen, G. R., On area-preserving non-hyperbolic chaotic maps: a case study, Chaos, Solitons Fractals, 16, 811-818, (2003) · Zbl 1033.37008
[13] Wang, T.; Nuo, J., Chaos control and hybrid projective synchronization of several new chaotic systems, Appl. Math. Comput., 218, 7231-7240, (2012) · Zbl 1248.93082
[14] Li, R. H., A special full-state hybrid projective synchronization in symmetrical chaotic systems, Appl. Math. Comput., 200, 321-329, (2008) · Zbl 1152.65117
[15] Mires, K. A.; Sprott, J. C., Controlling chaos in a high dimensional system with period parametric perturbations, Phys. Lett. A, 4, 75-278, (1999)
[16] Codreanu, S., Synchronization of spatiotemporal nonlinear dynamical systems by an active control, Chaos, Solitons Fractals, 15, 507-510, (2003) · Zbl 1098.93509
[17] Odibat, Z. M.; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Int. J. Nonlinear Sci. Numer. Simul., 7, 27-34, (2006)
[18] Mahmoud, G. M.; Mahmoud, E. E.; Ahmed, M. E., On the hyperchaotic complex Lü system, Nonlinear Dyn., 58, 725-738, (2009) · Zbl 1183.70053
[19] Zhang, H. G.; Ma, T. D.; Huang, G. B., Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control, IEEE Trans. Syst. Man Cybern. Part B Cybern., 40, 831-844, (2010)
[20] Ma, T. D.; Fu, J., On the exponential synchronization of stochastic impulsive chaotic delayed neural networks, Neurocomputing, 74, 857-862, (2011)
[21] Nian, F. Z.; Wang, X. Y.; Niu, Y. J.; Lin, D., Module-phase synchronization in complex dynamic system, Appl. Math. Comput., 217, 2481-2489, (2010) · Zbl 1207.93047
[22] Fu, J.; Zhang, H. G.; Ma, T. D., On passivity analysis for stochastic neural networks with interval time-varying delay, Neurocomputing, 73, 795-801, (2010)
[23] Zhang, H. G.; Xie, Y. H.; Wang, Z. L., Adaptive synchronization between two different chaotic neural networks with time delay, IEEE Trans. Neural Networks, 18, 1841-1845, (2007)
[24] Fu, J.; Zhang, H. G.; Ma, T. D., Delay-probability-distribution-dependent robust stability analysis for stochastic neural networks with time-varying delay, Prog. Nat. Sci., 19, 1333-1340, (2009)
[25] Mahmoud, G. M.; Mahmoud, E. E., Lag synchronization of hyperchaotic complex nonlinear systems, Nonlinear Dyn., 67, 1613-1622, (2012) · Zbl 1243.93044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.