×

zbMATH — the first resource for mathematics

Recovering the electrical conductivity of the soil via a linear integral model. (English) Zbl 1410.65119
Summary: Electromagnetic induction techniques are often used to ascertain the presence of conductive substances in the subsoil. The device we are interested in generates an electromagnetic field and measures the secondary field produced by eddy currents induced by the primary field. We analyze a linear model which reproduces the device readings, consisting of a system of two Fredholm linear integral equations of the first kind. After studying the continuous problem in various function spaces, we describe three collocation methods to transform the integral equations into a system of linear equations, which is solved by a regularization technique. Numerical experiments show the performance of the different discretizations, and of a particular approach to deal with the integral truncation error. We also verify the influence on the solution of regularization matrices based on the discretization of the first and second derivative.

MSC:
65F22 Ill-posedness and regularization problems in numerical linear algebra
65R20 Numerical methods for integral equations
86A22 Inverse problems in geophysics
45B05 Fredholm integral equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cassiani, G.; Ursino, N.; Deiana, R.; Vignoli, G.; Boaga, J.; Rossi, M.; Perri, M. T.; Blaschek, M.; Duttmann, R.; Meyer, S.; Ludwig, R.; Soddu, A.; Dietrich, P.; Werban, U., Noninvasive monitoring of soil static characteristics and dynamic states: a case study highlighting vegetation effects on agricultural land, Vadose Zone J., 11, 3, (2012), vzj2011.0195
[2] Dragonetti, G.; Comegna, A.; Ajeel, A.; Deidda, G.; Lamaddalena, N.; Rodriguez, G.; Vignoli, G.; Coppola, A., Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements, Hydrol. Earth Syst. Sci., 22, 1509-1523, (2018)
[3] Yao, R.; Yang, J., Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method, Agric. Water Manag., 97, 12, 1961-1970, (2010)
[4] Lascano, E.; Martinelli, P.; Osella, A., EMI data from an archaeological resistive target revisited, Near Surf. Geophys., 4, 6, 395-400, (2006)
[5] Osella, A.; de la Vega, M.; Lascano, E., 3D electrical imaging of an archaeological site using electrical and electromagnetic methods, Geophysics, 70, 4, G101-G107, (2005)
[6] Thiesson, J.; Dabas, M.; Flageul, S., Detection of resistive features using towed Slingram electromagnetic induction instruments, Archaeol. Prospect., 16, 2, 103-109, (2009)
[7] Boaga, J.; Ghinassi, M.; D’Alpaos, A.; Deidda, G.; Rodriguez, G.; Cassiani, G., Geophysical investigations unravel the vestiges of ancient meandering channels and their dynamics in tidal landscapes, Sci. Rep., 8, 1708, (2018), (8 pages)
[8] Lesch, S. M.; Strauss, D. J.; Rhoades, J. D., Spatial prediction of soil salinity using electromagnetic induction techniques: 1. Statistical prediction models: A comparison of multiple linear regression and cokriging, Water Resour. Res., 31, 373-386, (1995)
[9] Sambuelli, L.; Leggieri, S.; Calzoni, C.; Porporato, C., Study of riverine deposits using electromagnetic methods at a low induction number, Geophysics, 72, 5, B113-B120, (2007)
[10] Martinelli, P.; Dupla, M. C., Laterally filtered 1D inversions of small-loop, frequency-domain EMI data from a chemical waste site, Geophysics, 73, 4, F143-F149, (2008)
[11] Pellerin, L., Applications of electrical and electromagnetic methods for environmental and geotechnical investigations, Surv. Geophys., 23, 2-3, 101-132, (2002)
[12] Viganotti, M.; Jackson, R.; Krahn, H.; Dyer, M., Geometric and frequency EMI sounding of estuarine earthen flood defence embankments in Ireland using 1D inversion models, J. Appl. Geophys., 92, 110-120, (2013)
[13] Spies, B. R.; Frischknecht, F. C., Electromagnetic sounding, (Nabighian, M. N., Electromagnetic Methods in Applied Geophysics. Volume 2: Application. Electromagnetic Methods in Applied Geophysics. Volume 2: Application, Investigation in Geophysics, vol. 3, (1991), Society of Exploration Geophysicists: Society of Exploration Geophysicists Tulsa, OK), 285-426
[14] Ward, S. H.; Hohmann, G. W., Electromagnetic theory for geophysical applications, (Nabighian, M. N., Electromagnetic Methods in Applied Geophysics. Volume 1: Theory. Electromagnetic Methods in Applied Geophysics. Volume 1: Theory, Investigation in Geophysics, vol. 3, (1987), Society of Exploration Geophysicists: Society of Exploration Geophysicists Tulsa, OK), 131-311
[15] McNeill, J. D., Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers, (1980), Technical Note TN-6, Geonics Limited
[16] Hendrickx, J. M.H.; Borchers, B.; Corwin, D. L.; Lesch, S. M.; Hilgendorf, A. C.; Schlue, J., Inversion of soil conductivity profiles from electromagnetic induction measurements, Soil Sci. Soc. Am. J., 66, 3, 673-685, (2002), package NONLINEM38 available at http://infohost.nmt.edu/ borchers/nonlinem38.html
[17] Deidda, G.; Díaz De Alba, P.; Rodriguez, G., Identifying the magnetic permeability in multi-frequency EM data inversion, Electron. Trans. Numer. Anal., 47, 1-17, (2017) · Zbl 1372.65118
[18] Deidda, G. P.; Fenu, C.; Rodriguez, G., Regularized solution of a nonlinear problem in electromagnetic sounding, Inverse Problems, 30, 125014, (2014), (27 pages) · Zbl 1308.35294
[19] Díaz de Alba, P.; Rodriguez, G., Regularized inversion of multi-frequency EM data in geophysical applications, (Ortegón Gallego, F.; Redondo Neble, M.; Rodríguez Galván, J., Trends in Differential Equations and Applications. Trends in Differential Equations and Applications, SEMA SIMAI Springer Series, vol. 8, (2016), Springer: Springer Switzerland), 357-369 · Zbl 06981865
[20] Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations, (1923), Yale University Press: Yale University Press New Haven · JFM 49.0725.04
[21] Kress, R., Linear Integral Equations, (1999), Springer
[22] Picard, E., Sur un théorème général relatif aux équations intégrales de première espèce et sur quelques problèmes de physique mathématique, Rend. Circ. Mat. Palermo (2), 29, 79-97, (1910) · JFM 41.0413.02
[23] Phillips, D. L., A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach., 9, 84-97, (1962) · Zbl 0108.29902
[24] Chen, Z.; Micchelli, C.; Xu, Y., Multiscale Methods for Fredholm Integral Equations, (2015), Cambridge University Press · Zbl 1332.65188
[25] Luo, X.; Li, F.; Yang, S., A posteriori parameter choice strategy for fast multiscale methods solving ill-posed integral equations, Adv. Comput. Math., 36, 2, 299-314, (2012) · Zbl 1250.65158
[26] Maleknejad, K.; Mollapourasl, R.; Alizadeh, M., Convergence analysis for numerical solution of Fredholm integral equation by Sinc approximation, Commun. Nonlinear Sci. Numer. Simul., 16, 6, 2478-2485, (2011) · Zbl 1221.65335
[27] Du, H.; Cui, M., Approximate solution of the Fredholm integral equation of the first kind in a reproducing kernel Hilbert space, Appl. Math. Lett., 21, 6, 617-623, (2008) · Zbl 1145.65113
[28] Panigrahi, B.; Long, G.; Nelakanti, G., Legendre multi-projection methods for solving eigenvalue problems for a compact integral operator, J. Comput. Appl. Math., 239, 1, 135-151, (2013) · Zbl 1255.65249
[29] Nair, M., Quadrature based collocation methods for integral equations of the first kind, Adv. Comput. Math., 36, 2, 315-329, (2012) · Zbl 1261.65140
[30] Vainikko, G. M.; Khyamarik, U. A., Projection methods and self-regularization in ill-posed problems, Izv. Vyssh. Uchebn. Zaved. Mat., 10, 3-17, (1985), english translation: Soviet Math. (Iz. VUZ) 29 (1985), no. 10, 1-20 · Zbl 0613.65056
[31] Tikhonov, A., Regularization of incorrectly posed problems, Soviet Math. Dokl., 4, 16241627, (1963) · Zbl 0183.11601
[32] Tikhonov, A., Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4, 1035-1038, (1963) · Zbl 0141.11001
[33] Hansen, P. C., Rank-Deficient and Discrete Ill-Posed Problems, (1998), SIAM: SIAM Philadelphia
[34] Yosida, K., Functional Analysis, Vol. 5, (1970), Springer
[35] Groetsch, C. W., (Elements of Applicable Functional Analysis. Elements of Applicable Functional Analysis, Monographs and Textbooks in Pure and Applied Mathematics, vol. 55, (1980), Dekker) · Zbl 0428.46016
[36] Wing, G. M., A Primer on Integral Equations of the First Kind: The Problem of Deconvolution and Unfolding, (1991), SIAM
[37] Sneddon, I., Special Functions of Mathematical Physics and Chemistry, (1966), Oliver and Boyd: Oliver and Boyd Edinburgh and London
[38] Rudin, W., Real and Complex Analysis, (1987), McGraw-Hill: McGraw-Hill New York · Zbl 0925.00005
[39] Crum, M., On the theorems of Müntz and Szász, J. Lond. Math. Soc., 31, 433-437, (1956) · Zbl 0071.10903
[40] Lee, J. W.; Prenter, P. M., An analysis of the numerical solution of Fredholm integral equations of the first kind, Numer. Math., 30, 1-24, (1978) · Zbl 0425.65074
[41] Smithies, F., Integral Equations, (1958), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0082.31901
[42] Borchers, B.; Uram, T.; Hendrickx, J. M.H., Tikhonov regularization of electrical conductivity depth profiles in field soils, Soil Sci. Soc. Am. J., 61, 4, 1004-1009, (1997), package LINEM38 available at http://infohost.nmt.edu/ borchers/linem38.html
[43] de Boor, C., (A Practical Guide to Splines. A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27, (1978), Springer-Verlag: Springer-Verlag New York) · Zbl 0406.41003
[44] Kress, R., Numerical Analysis, (1998), Springer
[45] Björck, Å., Numerical Methods for Least Squares Problems, (1996), SIAM: SIAM Philadelphia · Zbl 0734.65031
[46] Craven, P.; Wahba, G., Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of Generalized Cross Validation, Numer. Math., 31, 377-403, (1979) · Zbl 0377.65007
[47] Engl, H.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems, (1996), Kluwer: Kluwer Dordrecht · Zbl 0859.65054
[48] Hochstenbach, M. E.; Reichel, L.; Rodriguez, G., Regularization parameter determination for discrete ill-posed problems, J. Comput. Appl. Math., 273, 132-149, (2015) · Zbl 1295.65046
[49] Park, Y.; Reichel, L.; Rodriguez, G.; Yu, X., Parameter determination for Tikhonov regularization problems in general form, J. Comput. Appl. Math., 343, 12-25, (2018) · Zbl 1391.65100
[50] Reichel, L.; Rodriguez, G., Old and new parameter choice rules for discrete ill-posed problems, Numer. Algorithms, 63, 1, 65-87, (2013) · Zbl 1267.65045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.