×

New rough approximations for \(n\)-cycles and \(n\)-paths. (English) Zbl 1410.68355

Summary: In this paper, we continue the study of a finite simple undirected graph through the rough set techniques introduced by Z. Pawlak [Int. J. Comput. Inform. Sci. 11, 341–356 (1982; Zbl 0501.68053)]. In this sense, we focus on the Boolean information system induced from a circle or a line graph with \(n\) vertices and, for such graphs, we provide a complete description of the rough membership function and some results on the positive regions and the attribute dependency function.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
68R10 Graph theory (including graph drawing) in computer science

Citations:

Zbl 0501.68053
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aledo, J. A.; Martínez, S.; Pelayo, F. L.; Valverde, J. C., Parallel discrete dynamical systems on maxterm and minterm Boolean functions, Math. Comput. Model., 55, 3-4, 666-671, (2012) · Zbl 1255.37003
[2] Aledo, J. A.; Martínez, S.; Valverde, J. C., Parallel dynamical systems over directed dependency graphs, Appl. Math. Comput., 219, 3, 1114-1119, (2012) · Zbl 1291.37018
[3] Aledo, J. A.; Martínez, S.; Valverde, J. C., Parallel discrete dynamical systems on independent local functions, J. Comput. Appl. Math., 237, 1, 335-339, (2013) · Zbl 1248.37077
[4] Aledo, J. A.; Martínez, S.; Valverde, J. C., Parallel dynamical systems over special digraph classes, Int. J. Comput. Math., 90, 10, 2039-2048, (2013) · Zbl 1329.68177
[5] Aledo, J. A.; Martínez, S.; Valverde, J. C., Parallel dynamical systems over graphs and related topics: a survey, J. Appl. Math., 2015, (2015)
[6] Aledo, J. A.; Martínez, S.; Valverde, J. C., An extension of parallel dynamical systems over graphs, Appl. Math. Inf. Sci., 9, 4, 1803-1808, (2015)
[7] Bisi, C.; Chiaselotti, G., A class of lattices and Boolean functions related to the manickam-miklös-singhi conjecture, Adv. Geom., 13, 1, 1-27, (2013) · Zbl 1259.05178
[8] Bisi, C.; Chiaselotti, G.; Oliverio, P. A., Sand piles models of signed partitions with d piles, ISRN Comb., 2013, (2013) · Zbl 1264.05007
[9] Bisi, C.; Chiaselotti, G.; Marino, G.; Oliverio, P. A., A natural extension of the Young partitions lattice, Adv. Geom., 15, 3, 263-280, (2015) · Zbl 1317.05018
[10] Cattaneo, G.; Chiaselotti, G.; Dennunzio, A.; Formenti, E.; Manzoni, L., Non uniform cellular automata description of signed partition versions of ice and sand pile models, Cellular Automata, Lecture Notes in Computer Science, vol. 8751, 115-124, (2014)
[11] Chiaselotti, G.; Marino, G.; Oliverio, P. A.; Petrassi, D., A discrete dynamical model of signed partitions, J. Appl. Math., 2013, (2013) · Zbl 1266.06001
[12] Chiaselotti, G.; Gentile, T.; Marino, G.; Oliverio, P. A., Parallel rank of two sandpile models of signed integer partitions, J. Appl. Math., 2013, (2013) · Zbl 1268.06001
[13] Chiaselotti, G.; Gentile, T.; Oliverio, P. A., Parallel and sequential dynamics of two discrete models of signed integer partitions, Appl. Math. Comput., 232, 1249-1261, (2014) · Zbl 1410.37015
[14] Chiaselotti, G.; Gentile, T.; Oliverio, P. A., Lattices of partial sums, Algebra Discret. Math., 18, 2, 171-185, (2014) · Zbl 1325.06001
[15] Chiaselotti, G.; Keith, W.; Oliverio, P. A., Two self-dual lattices of signed integer partitions, Appl. Math. Inf. Sci., 8, 3191-3199, (2014)
[16] Chiaselotti, G.; Ciucci, D.; Gentile, T., Simple undirected graphs as formal contexts, Proc. ICFCA, LNCS 9113, 287-302, (2015) · Zbl 1312.68184
[17] Chiaselotti, G.; Gentile, T.; Infusino, F. G.; Oliverio, P. A., Rough sets for n-cycles and n-paths, Appl. Math. Inf. Sci., 10, 1, (2016)
[18] Chopard, B.; Droz, M., Cellular Automata for Modeling Physics, (1998), Cambridge University Press Cambridge · Zbl 0935.82561
[19] Deutsch, A.; Dormann, S., Cellular Automaton Modelling of Biological Pattern Formation, (2004), Birkhäuser Boston
[20] Diestel, R., Graph theory, Graduate Text in Mathematics, (2010), Springer · Zbl 1204.05001
[21] Hogeweg, P., Cellular automata as a paradigm for ecological modeling, Appl. Math. Comput., 27, 81-100, (1988) · Zbl 0646.92024
[22] Kier, L. B.; Seybold, P. G.; Cheng, C.-K., Modeling Chemical Systems Using Cellular Automata, (2005), Springer New York
[23] Mortveit, H. S.; Reidys, C. M., An Introduction to Sequential Dynamical Systems, (2007), Springer New York
[24] Pawlak, Z., Information systems theoretical foundations, Inf. Sci., 6, 3, 205-218, (1981) · Zbl 0462.68078
[25] Pawlak, Z., Rough sets, Int. J. Comput. Inf. Sci., 11, 5, 341-356, (1982) · Zbl 0501.68053
[26] Pawlak, Z., Rough sets, Theoretical Aspects of Reasoning about Data, (1991), Kluwer Academic Publisher · Zbl 0758.68054
[27] Pawlak, Z.; Skowron, A., Rudiments of rough sets, Inf. Sci., 177, 3-27, (2007) · Zbl 1142.68549
[28] Pawlak, Z.; Skowron, A., Rough sets: some extensions, Inf. Sci., 177, 28-40, (2007) · Zbl 1142.68550
[29] Pawlak, Z.; Skowron, A., Rough sets and Boolean reasoning, Inf. Sci., 177, 41-73, (2007) · Zbl 1142.68551
[30] Petrassi, D., On some numbers related to extremal combinatorial sum problems, J. Discret. Math., 2014, 6, (2014) · Zbl 1295.05252
[31] Rickert, M.; Nagel, K.; Schreckenberg, M.; Latour, A., Two Lane traffic simulations using cellular automata, Physica A, 231, 534-550, (1996)
[32] Toroczkai, Z.; Guclu, H., Proximity networks and epidemics, Physica A, 378, 68-75, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.