×

Analysis of wind-induced vibrations of an anchor cable using a simplified fluid-structure interaction method. (English) Zbl 1410.74029

Summary: Wind-induced vibrations of a pre-stressed aramid anchor cable using a simplified fluid-structure interaction (FSI) method are presented in the paper. Navier-Stokes equations for incompressible flow are solved in nine two-dimensional transverse planes located perpendicularly to the longitudinal axis of the cable. Based on in situ measured wind records statistical and spectral characteristics of the simulated turbulent wind fields were assigned to the investigated cable. The Shinozuka-Deodatis method is used to generate wind velocity histories. Spatially correlated wind velocity components in the longitudinal and lateral direction were considered as an inflow condition in nine created parallel plane fluid flow models. In order to generate an appropriate computational fluid dynamics model (CFD) of sufficient accuracy the verification and validation of the most critical issues were performed. The turbulent hybrid Spalart-Allmaras Detached Eddy Simulation (SA-DES) model was assumed accurate enough and applied in the plane fluid flow models of the dynamic analyses. The finite element method is applied to simulate the aeroelastic behaviour of the cable subjected to turbulent wind effects. Aeroelastic response characterised by wind velocity fields and vortex-shedding phenomena around the cross-section of the cable are presented. Results obtained from the simplified FSI analysis were used for the calculation of the Rayleigh Beta damping coefficient and applied in the nonlinear dynamic analysis of the anchor cable (CSD model). Responses obtained by FSI and CSD models are compared.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Irvine, H. M., Cable Structures, Mass (1981), The MIT Press: The MIT Press Cambridge
[2] Buchholdt, H. A., Introduction to Cable Roof Structures (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0588.73100
[3] Gattulli, V.; Martinelli, L.; Perotti, F.; Vestroni, F., Dynamics of suspended cables under turbulence loading: reduced models of wind field and mechanical system, J. Wind Eng. Ind. Aerodyn., 95, 183-207 (2007)
[4] Tesar, A., Aeroelastic response of spider-web structures, Build. Res. J., 57, 77-92 (2009)
[5] Cluni, F.; Gusella, V.; Ubertini, F., A parametric investigation of wind-induced cable fatigue, Eng. Struct., 29, 3094-3105 (2007)
[6] Kolousek, V.; Pirner, M.; Fischer, O.; Naprstek, J., Wind Effects on Civil Engineering Structures (1984), Elsevier: Elsevier Amsterdam
[7] Solari, G.; Piccardo, G., Probabilistic 3-D turbulence modelling for gust buffeting of structures, Probab. Eng. Mech., 16, 73-86 (2001)
[8] Holmes, D. J., Wind Loading of Structures (2001), Spon Press: Spon Press London, New York
[9] Carassale, L.; Piccardo, G., Non-linear discrete models for the stochastic analysis of cables in turbulent wind, Int. J. Nonlinear Mech., 45, 219-231 (2010)
[10] Techet, A. H.; Hover, F. S.; Triantafyllou, M. S., Vortical patterns behind atapered cylinder oscillating transversely to a uniform flow, J. Fluid Mech., 363, 79-96 (1998) · Zbl 0967.76510
[11] Breuer, M., A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow, Int. J. Heat Fluid Flow, 21, 648-654 (2000)
[12] Catalano, P.; Wang, M.; Iaccarino, G.; Moin, P., Numerical simulation of the flow around a circular cylinder at high Reynolds numbers, Int. J. Heat Fluid Flow, 24, 463-469 (2003)
[13] Khaledi, H. A.; Andersson, H. I., On vortex shedding from a hexagonal cylinder, Phys. Lett. A, 375, 4007-4021 (2011) · Zbl 1254.76073
[14] Belver, A. V.; Iban, A. L.; Martin, C. E.L., Coupling between structural and fluid dynamic problems applied to vortex shedding in a 90 m steel chimney, J. Wind Eng. Ind. Aerodyn., 100, 30-37 (2012)
[15] De Nayer, G.; Kalmbach, A.; Breuer, M.; Sicklinger, S.; Wüchner, R., Flow past a cylinder with a flexible splitter plate: a complementary experimental-numerical investigation and a new FSI test case (FSI-PfS-1a), Comput. Fluids, 99, 18-43 (2014)
[16] Jakobsen, J. B.; Andersen, T. L.; Macdonald, J. H.G.; Nikitas, N.; Larose, G. L.; Savage, M. G.; McAuliffe, B. R., Wind-induced response and excitation characteristics of an inclined cable model in the critical Reynolds number range, J. Wind Eng. Ind. Aerodyn., 110, 100-112 (2012)
[17] Xie, P.; Zhou, C. Y., Numerical investigation on effects of rivulet and cable oscillation of a stayed cable in rain-wind-induced vibration, J. Mech. Sci. Technol., 27, 3, 685-701 (2013)
[18] Brusiani, F.; deMiranda, S.; Patruno, L.; Ubertini, F.; Vaona, P., On the evaluation of bridge deck flutter derivatives using RANS turbulence models, J. Wind Eng. Ind. Aerodyn., 119, 39-47 (2013)
[19] Glück, M.; Breuer, M.; Durst, F.; Halfmann, A.; Rank, E., Computation of fluid-structure interaction on lightweight structures, J. Wind Eng. Ind. Aerodyn., 89, 1351-1368 (2001)
[20] Zhang, H.; Zhang, X.; Ji, S.; Guo, Y.; Ledezma, G.; Elabbasi, N.; deCougny, H., Recent development of fluid-structure interaction capabilities in the ADINA system, Comput. Struct., 81, 1071-1085 (2003)
[21] Dettmer, W.; Peric, D., A computational framework for fluid-rigid body interaction: finite element formulation and applications, Comput. Methods Appl. Mech. Eng., 195, 1633-1666 (2006) · Zbl 1123.76029
[22] Tezduyar, T. E.; Sathe, S.; Keedy, R.; Stein, K., Space-time finite element techniques for computation of fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 195, 2002-2027 (2006) · Zbl 1118.74052
[24] Michalski, A.; Kermel, P. D.; Haug, E.; Löhner, R.; Wüchner, R.; Bletzinger, K. U., Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29m umbrella in natural wind flow, J. Wind Eng. Ind. Aerodyn., 99, 400-413 (2011)
[25] Keyhan, H.; McClure, G.; Habashi, W. G., Dynamic analysis of an overhead transmission line subject to gusty wind loading predicted by wind-conductor interaction, Comput. Struct., 122, 135-144 (2013)
[26] Kannan, R.; Harrand, V.; Tan, X. G.; Yang, H. Q.; Przekwas, A. J., Highly scalable computational algorithms on emerging parallel machine multicore architectures II: development and implementation in the CSD and FSI contexts, J. Parallel Distrib. Comput., 74, 2808-2817 (2014)
[27] Khurram, R. A.; Zhang, Y.; Habashi, W. G., Multiscale finite element method applied to the Spalart-Allmaras turbulence model for 3D detached-eddy simulation, Comput. Methods Appl. Mech. Eng., 233-236, 180-193 (2012) · Zbl 1253.76059
[28] Tomko, M.; Kmet, S.; Soltys, R., Vibrations of an aramid anchor cable subjected to turbulent wind, Adv. Eng. Software, 72, 39-56 (2014)
[30] Ubertini, F.; Giuliano, F., Computer simulation of stochastic wind velocity fields for structural response analysis: comparisons and applications, Adv. Civil Eng., 1-20 (2010)
[31] Di Paola, M., Digital simulation of wind field velocity, J. Wind Eng. Ind. Aerodyn., 74-76, 91-109 (1998)
[32] Shinozuka, M.; Jan, C. M., Digital simulation of random processes and its applications, J. Sound Vib., 25, 1, 111-128 (1972)
[33] Deodatis, G., Simulation of ergodic multivariate stochastic processes, J. Eng. Mech. ASCE, 122, 778-787 (1996)
[35] Bathe, K. J.; Zhang, H., A mesh adaptivity procedure for CFD and fluid-structure interactions, Comput. Struct., 87, 604-617 (2009)
[36] Spalart, P. R.; Allmaras, S. R., A one-equation turbulence model for aerodynamic flows, Rech. Aerosp., 1, 5-21 (1994)
[37] Wieselsberger, C., Neuere Feststellungen über die Gesetze des Flüssigkeits- und Luftwiderstands, Phys. Z., 22, 321-328 (1921), (in German)
[38] Roshko, A., Experiments on the past a circular cylinder at very high Reynolds number, J. Fluid Mech., 10, 345-356 (1961) · Zbl 0109.43702
[40] Kaci, S., Experimental study of mechanical behaviour of composite cables for prestress, J. Eng. Mech. ASCE, 121, 709-716 (1995)
[41] Bendat, J. S., The Hilbert Transform and Applications to Correlation Measurements (1985), Tech. Rep. Brüel & Kjaer Publications: Tech. Rep. Brüel & Kjaer Publications Nærum, Denmark
[42] Hilber, H. M.; Hughes, T. J.R.; Taylor, R. L., Improved numerical dissipation for time integration algorithm in structural dynamics, Earthq. Eng. Struct. Dyn., 5, 282-292 (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.