Radiation effects from an isothermal vertical wavy cone with variable fluid properties. (English) Zbl 1410.76425

Summary: Numerical solutions are presented for the natural convection flow along a vertical wavy cone situated in the thermally radiating fluid. The fluid flow and heat transfer characteristics are analyzed for the fluid having temperature dependent viscosity and thermal conductivity. After the primitive variable formulations, the transformed equations are integrated numerically through implicit finite difference method. Computational results are carried out for a range of physical parameters and interpreted in the form of skin friction coefficient, Nusselt number coefficient, streamlines and isotherms. The calculations show strong influence of thermal radiation parameter on the velocity and temperature fields. It is also reported that variable fluid properties sufficiently alter the important physical quantities and the quantitative analysis determines that it is likely to be more than 50%.


76R10 Free convection
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI


[1] Yao, L. S., Natural convection along a vertical wavy surface, J. Heat Transf., 105, 465-468, (1983)
[2] Moulic, S. G.; Yao, L. S., Natural convection along a wavy surface with uniform heat flux, J. Heat Transf., 111, 1106-1108, (1989)
[3] Rees, D. A.S.; Pop, I., Free convection induced by a vertical wavy surface with uniform heat flux in a porous medium, J. Heat Transf., 117, 545-550, (1995)
[4] Hossain, M. A.; Pop, I., Magnetohydrodynamic boundary layer flow and heat transfer on a continuous moving wavy surface, Arch. Mech., 48, 813-823, (1996) · Zbl 0877.76079
[5] Hossain, M. A.; Rees, D. A.S., Combined heat and mass transfer in natural convection flow from a vertical wavy surface, Acta Mech., 136, 133-141, (1999) · Zbl 0934.76085
[6] Siddiqa, S.; Hossain, M. A.; Saha, SuvashC., Natural convection flow with surface radiation along a vertical wavy surface, Numer. Heat Transf. Part A Appl., 64, 400-415, (2013)
[7] Siddiqa, S.; Hossain, Md. A., Natural convection flow over wavy horizontal surface, Adv. Mech. Eng., 5, 7, (2013)
[8] Siddiqa, S.; Hossain, M. A.; Saha, S. C., The effect of thermal radiation on the natural convection boundary layer flow over a wavy horizontal surface, Int. J. Therm. Sci., 84, 143-150, (2014)
[9] Pop, I.; Na, T. Y., Natural convection over a vertical wavy frustum of a cone, J. Nonlinear Mech., 34, 925-934, (1999) · Zbl 1006.76088
[10] Hossain, M. A.; Munir, M. S.; Pop, I., Natural convection with variable viscosity and thermal conductivity from a vertical wavy cone, Int. J. Therm. Sci., 40, 437-443, (2001)
[11] Sheremet, M. A.; Pop, I.; Shenoy, A., Unsteady free convection in a porous open wavy cavity filled with a nanofluid using Buongiorno’s mathematical model, Int. Commun. Heat Mass Transf., 67, 66-72, (2015)
[12] Sheremet, M. A.; Miroshnichenko, I. V., Effect of surface radiation on transient natural convection in a wavy-walled cavity, Numer. Heat Transf. Part A, 69, 369-382, (2016)
[13] Gary, J.; Kassory, D. R.; Tadjeran, H.; Zebib, A., The effect of significant viscosity variation on convective heat transport in water-saturated porous media, J. Fluid Mech., 117, 233-249, (1982) · Zbl 0491.76078
[14] Mehta, K. N.; Sood, S., Transient free convection flow with temperature dependent viscosity in a fluid saturated porous medium, Int. J .Eng. Sci., 30, 1083-1087, (1992) · Zbl 0753.76165
[15] Hady, F. M.; Bakier, A. Y.; Gorla, R. S.R., Mixed convection boundary layer flow on a continuous flat plate with variable viscosity, Heat Mass Transf., 31, 169-172, (1996)
[16] Kafoussius, N. G.; Williams, E. W., The effect of temperature-dependent viscosity on the free convective laminar boundary layer flow past a vertical isothermal flat plate, Acta Mech., 110, 123-137, (1997) · Zbl 0857.76082
[17] Hossain, M. A.; Munir, M. S.; Takhar, H. S., Natural convection flow of a viscous fluid about a truncated cone with temperature dependent viscosity, Acta Mech., 140, 171-181, (2000) · Zbl 0959.76083
[18] Hossain, M. A.; Kabir, S.; Rees, D. A.S., Natural convection of fluid with variable viscosity from a heated vertical wavy surface, ZAMP, 53, 48-52, (2002) · Zbl 0996.76081
[19] Arunachalam, M.; Rajappa, N. R., Thermal boundary layer in liquid metals with variable thermal conductivity, Int. J. Appl. Sci. Res., 34, 179-187, (1978) · Zbl 0398.76028
[20] Chrraudeau, J., Influence de gradients de proprieties physiques en convection force application au cas du tube, Int. J. Heat Mass Transf., 18, 87-95, (1975)
[21] Özișik, M. N., Radiative transfer and interactions with conduction and convection, (1973), John Wiley & Sons New York
[22] Sparrow, E. M.; Cess, R. D., Radiation heat transfer, augmented edition, hemisphere media, Int. J. Heat Mass Transf., 5, 179-806, (1962)
[23] Arpaci, V. S., Effect of thermal radiation on the laminar free convection from a heated vertical plate, Int. J. Heat Mass Transf., 11, 871-881, (1968) · Zbl 0159.57902
[24] Hossain, M. A.; Kutubuddin, M.; Pop, I., Effect of conduction-radiation interaction on the mixed convection flow from a horizontal cylinder, Int. J. Heat Mass Transf., 35, 307-314, (1999)
[25] Hossain, M. A.; Anghel, M.; Pop, I., Thermal radiation effect on free convection over axisymmetric body with application to a rotating hemisphere, Arch. Mech., 54, 55-74, (2002) · Zbl 1142.76485
[26] Siddiqa, S.; Asghar, S.; Hossain, M. A., Radiation effects on natural convection flow over an inclined flat plate with temperature-dependent viscosity, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 225, 407-419, (2011)
[27] Hossain, M. A.; Rees, D. A.S., Radiation conduction interaction on mixed convection flow along a slender vertical cylinder, AIAA J. Thermophys. Heat Transf., 12, 611-614, (1998)
[28] Martyushev, S. G.; Sheremet, M. A., Characteristics of rosseland and p-1 approximations in modeling nonstationary conditions of convection-radiation heat transfer in an enclosure with a local energy source, J. Eng. Thermophys., 21, 111-118, (2012)
[29] Blotter, F. G., Finite difference method of solution of boundary layer equations, J. AIAA, 8, 193-205, (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.