×

Partition algebras \(\mathsf {P}_k(n)\) with \(2k>n\) and the fundamental theorems of invariant theory for the symmetric group \(\mathsf {S}_n\). (English) Zbl 1411.05274

Authors’ abstract: Assume \(\mathsf {M}_n\) is the \(n\)-dimensional permutation module for the symmetric group \(\mathsf {S}_n\), and let \(\mathsf {M}_n ^{\otimes k}\) be its \(k\)-fold tensor power. The partition algebra \(\mathsf {P}_k(n)\) maps surjectively onto the centralizer algebra \(\mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\) for all \(k,n\in \mathbb Z_{\geqslant 1}\) and isomorphically when \(n\geqslant 2k\). We describe the image of the surjection \(\Phi_{k,n}:\mathsf {P}_k(n)\rightarrow \mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes}k)\) explicitly in terms of the orbit basis of \(\mathsf {P}_k(n)\) and show that when \(2k>n\) the kernel of \(\Phi_{k,n}\) is generated by a single essential idempotent \(\mathsf e_{k,n}\), which is an orbit basis element. We obtain a presentation for \(\mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\) by imposing one additional relation, \(\mathsf e_{k,n}=0\), to a presentation of the partition algebra \(\mathsf {P}_k(n)\) when \(2k>n\). As a consequence, we obtain the fundamental theorems of invariant theory for the symmetric group \(\mathsf {S}_n\). We show under the natural embedding of the partition algebra \(\mathsf {P}_n(n)\) into \(\mathsf {P}_k(n)\) for \(k \geq n\) that the essential idempotent \(\mathsf e_{n,n}\) generates the kernel of \(\Phi_{k,n}\). Therefore, the relation \(\mathsf e_{n,n}=0\) can replace \(\mathsf e_{k,n}=0\) when \(k\geqslant n\).

MSC:

05E10 Combinatorial aspects of representation theory
20C30 Representations of finite symmetric groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] G.Benkart, M.Chakrabarti, T.Halverson, R.Leduc, C.Lee and J.Stroomer, ‘Tensor product representations of general linear groups and their connections with Brauer algebras’, J. Algebra166 (1994) 529-567. · Zbl 0815.20028
[2] G.Benkart, T.Halverson and N.Harman, ‘Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups’, J. Algebraic Combin.46 (2017) 77-108. · Zbl 1368.05156
[3] C.Bowman, M.DeVisscher and R.Orellana, ‘The partition algebra and the Kronecker coefficients’, Discrete Math. Theor. Comput. Sci. Proc. AS (2013) 321-332.
[4] C.Bowman, M.DeVisscher and R.Orellana, ‘The partition algebra and the Kronecker coefficients’, Trans. Amer. Math. Soc.367 (2015) 3647-3667. · Zbl 1345.20014
[5] C.Bowman, J.Enyang and F. W.Goodman, ‘The cellular second fundamental theorem of invariant theory for classical groups’, Int. Math. Res. Not. IMRN, to appear. · Zbl 1511.20017
[6] R.Brauer, ‘On algebras which are connected with the semisimple continuous groups’, Ann. of Math.38 (1937) 857-872. · JFM 63.0873.02
[7] C.DeConcini and C.Procesi, The invariant theory of matrices, University Lecture Series 69 (American Mathematical Society, Providence, RI, 2017). · Zbl 1401.15001
[8] J.East, ‘Generators and relations for partition monoids and algebras’, J. Algebra339 (2011) 1-26. · Zbl 1277.20069
[9] W.Fulton and J.Harris, Representation theory, a first course, Graduate Texts in Mathematics 129 (Springer, New York, 1991). · Zbl 0744.22001
[10] R.Goodman and N. R.Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and Its Applications 68 (Cambridge University Press, Cambridge, 1998); 3rd corrected printing, Cambridge University Press (2003). · Zbl 0901.22001
[11] T.Halverson, ‘Characters of the partition algebras’, J. Algebra238 (2001) 502-533. · Zbl 1083.20010
[12] T.Halverson and A.Ram, ‘Partition algebras’, European J. Combin.26 (2005) 869-921. · Zbl 1112.20010
[13] J.Hu and Z.Xiao, ‘On tensor spaces for Birman-Murakami-Wenzl algebras’, J. Algebra324 (2010) 2893-2922. · Zbl 1272.17019
[14] V. F. R.Jones, ‘The Potts model and the symmetric group’, Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras, Kyuzeso, 1993 (World Scientific Publishing, River Edge, NJ, 1994) 259-267. · Zbl 0938.20505
[15] G.Lehrer and R.Zhang, ‘The second fundamental theorem of invariant theory for the orthogonal group’, Ann. of Math.176 (2012) 2031-2054. · Zbl 1263.20043
[16] G.Lehrer and R.Zhang, ‘The Brauer category and invariant theory’, J. Eur. Math. Soc.17 (2015) 2311-2351. · Zbl 1328.14079
[17] P.Martin, ‘Representations of graph Temperley-Lieb algebras’, Publ. Res. Inst. Math. Sci.26 (1990) 485-503. · Zbl 0718.17025
[18] P.Martin, ‘Temperley-Lieb algebras for non‐planar statistical mechanics — the partition algebra construction’, J. Knot Theory Ramifications3 (1994) 51-82. · Zbl 0804.16002
[19] P.Martin, ‘The structure of the partition algebra’, J. Algebra183 (1996) 319-358. · Zbl 0863.20009
[20] P.Martin, ‘The partition algebra and the Potts model transfer matrix spectrum in high dimensions’, J. Phys. A33 (2000) 3669-3695. · Zbl 0951.82006
[21] P.Martin and G.Rollet, ‘The Potts model representation and a Robinson-Schensted correspondence for the partition algebra’, Compos. Math.112 (1998) 237-254. · Zbl 0899.05070
[22] P.Martin and D.Woodcock, ‘On central idempotents in the partition algebra’, J. Algebra217 (1999) 156-169. · Zbl 0933.20006
[23] R.Orellana and M.Zabrocki, ‘Symmetric group characters as symmetric functions’, Preprint, arXiv:1605.06672v2. · Zbl 1473.05309
[24] M.Rubey and B.Westbury, ‘A combinatorial approach to classical representation theory’, Preprint, arXiv:1408.3592.
[25] M.Rubey and B.Westbury, Combinatorics of symplectic invariant tensors, Discrete Mathematics and Theoretical Computer Science Proceedings, FPSAC’2015 (Association of Discrete Mathematics Theoretical Computer Science, Nancy, 2015) 285-296. · Zbl 1335.05232
[26] R. P.Stanley, Enumerative combinatorics, vol. 1 (Cambridge, England, 1997). · Zbl 0889.05001
[27] H.Weyl, The classical groups. Their invariants and representations, Fifteenth printing, Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 1997). · Zbl 1024.20501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.