×

The cyclicity of period annuli for a class of cubic Hamiltonian systems with nilpotent singular points. (English) Zbl 1411.34047

In the paper, the authors investigate the maximal number of limit cycles that might occur in a class of symmetric cubic Hamiltonian systems with a nilpotent singular point under polynomial perturbations. It is well-known that the number of zeros of the abelian integral provides an upper bound for the number of limit cycles of such systems. They first obtain the algebraic structure of the abelian integral in terms of nine generators. Then, three Picard-Fuchs equations satisfied by the generators are derived. From the existence of a second-order differential operator that acts on the abelian integral, the number of zeros of the abelian integral can be estimated. The number of limit cycles follows from the Poincaré-Pontryagin Theorem.

MSC:

34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, V. I., Ten problems in: theory of singularities and its applications, Adv. Sov. Math., 1, 1-8, (1990)
[2] Atabaigi, A.; Nyamoradi, N.; Zangeneh, H. R.Z., The number of limit cycles of a quintic polynomial system, Comput. Math. Appl., 57, 677-684, (2009) · Zbl 1165.34332
[3] Bendjeddou, A.; Llibre, J.; Salhi, T., Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node, J. Differential Equations, 254, 3530-3537, (2013) · Zbl 1269.34034
[4] Binyamini, G.; Dor, G., An explicit linear estimate for the number of zeros of abelian integrals, Nonlinearity, 25, 1931-1946, (2012) · Zbl 1277.34039
[5] Binyamini, G.; Novikov, D.; Yakovenko, S., On the number of zeros of abelian integrals: a constructive solution of the infinitesimal Hilbert 16th problem, Invent. Math., 181, 227-289, (2010) · Zbl 1207.34039
[6] Buică, A.; Llibre, J., Limit cycles of a perturbed cubic polynomial differential center, Chaos Solitons Fractals, 32, 1059-1069, (2007) · Zbl 1298.34061
[7] Gasull, A.; Lázaro, T.; Torregrosa, J., Upper bounds for the number of zeroes for some abelian integrals, Nonlinear Anal., 75, 5169-5179, (2012) · Zbl 1254.34049
[8] Gasull, A.; Li, C.; Liu, C., On the number of limit cycles bifurcating from a non-global degenerated center, J. Math. Anal. Appl., 329, 268-280, (2007) · Zbl 1116.34029
[9] Gasull, A.; Yu, J.; Zhang, X., Vector fields with homogeneous nonlinearities and many limit cycles, J. Differential Equations, 258, 3286-3303, (2015) · Zbl 1326.34060
[10] Gavrilov, L.; Iliev, I. D., Quadratic perturbations of quadratic codimension-four centers, J. Math. Anal. Appl., 357, 69-76, (2009) · Zbl 1177.34046
[11] Giné, J.; Llibre, J., Limit cycles of cubic polynomial vector fields via the averaging theory, Nonlinear Anal., 66, 8, 1707-1721, (2007) · Zbl 1127.34025
[12] Giné, J.; Llibre, J., Integrability and algebraic limit cycles for polynomial differential systems with homogeneous nonlinearities, J. Differential Equations, 197, 147-161, (2004) · Zbl 1054.34051
[13] Llibre, J.; Pérez del Rĺo, J. S.; Rodrĺguez, J. A., Averaging analysis of a perturbed quadratic center, Nonlinear Anal., 46, 45-51, (2001)
[14] Horozov, E.; Iliev, I. D., Linear estimate for the number of zeros of abelian integrals with cubic Hamiltonians, Nonlinearity, 11, 1521-1537, (1998) · Zbl 0921.58044
[15] Horozov, E.; Mihajlova, A., An improved estimate for the number of zeros of abelian integrals for cubic Hamiltonians, Nonlinearity, 23, 3053-3069, (2010) · Zbl 1214.34028
[16] Khovansky, A. G., Real analytic manifolds with finiteness properties and complex abelian integrals, Funct. Anal. Appl., 18, 119-128, (1984)
[17] Li, C.; Li, W.; Llibre, J.; Zhang, Z., Linear estimate of the number of zeros of abelian integrals for a class of integrable non-Hamiltonian systems, Nonlinear Anal., 47, 4527-4531, (2001) · Zbl 1042.34531
[18] Li, W.; Zhao, Y.; Li, C.; Zhang, Z., Abelian integrals for quadratic centers having almost all their orbits formed by quartics, Nonlinearity, 15, 863-885, (2002) · Zbl 1038.37016
[19] Liu, C., Estimate of the number of zeros of abelian integrals for an elliptic Hamiltonian with figure-of-eight loop, Nonlinearity, 16, 1151-1163, (2003) · Zbl 1037.34026
[20] Malkin, K. E., Criteria for the center for a certain differential equation, Volz. Mat. Sb. Vyp., 2, 87-91, (1964), (Russian)
[21] Nyamoradi, N.; Zangeneh, H. R.Z., Linear estimate of the number of zeros of abelian integrals for a kind of quintic Hamiltonians, Bull. Iranian Math. Soc., 37, 101-116, (2011) · Zbl 1264.34063
[22] Petrov, G. S.; Petrov, G. S., Complex zeros of an elliptic integral, Funct. Anal. Appl., Funct. Anal. Appl., 23, 160-161, (1989) · Zbl 0709.33015
[23] Shao, Y.; Zhao, Y., The cyclicity and period function of a class of quadratic reversible Lotka-Volterra system of genus one, J. Math. Anal. Appl., 377, 817-827, (2011) · Zbl 1219.34044
[24] Varchenko, A. N., Estimate of the number of zeros of an abelian integral depending on a parameter and limit cycles, Funct. Anal. Appl., 18, 98-108, (1984) · Zbl 0578.58035
[25] Vulpe, N. I.; Sibirski, K. S., Centro-affine invariant conditions for the existence of a center of a differential system with cubic nonlinearities, Dokl. Akad. Nauk SSSR, Sov. Math., Dokl., 38, 198-201, (1989), translation in: · Zbl 0674.34025
[26] Wu, J.; Zhang, Y.; Li, C., On the number of zeros of abelian integrals for a kind of quartic Hamiltonians, Appl. Math. Comput., 228, 329-335, (2014) · Zbl 1364.37114
[27] Zhang, Y.; Li, C., Estimate for the number of zeros of abelian integrals for a kind quartic Hamiltonians, Neural Parallel Sci. Comput., 16, 497-504, (2008) · Zbl 1192.34045
[28] Zhang, T.; Tadé, M.; Tian, Y., Linear estimate of the number of limit cycles for a class of non-linear systems, Chaos Solitons Fractals, 31, 804-810, (2007) · Zbl 1147.34318
[29] Zhao, L.; Qi, M.; Liu, C., The cyclicity of period annuli of a class of quintic Hamiltonian systems, J. Math. Anal. Appl., 403, 391-407, (2013) · Zbl 1288.34033
[30] Zhao, Y.; Li, W.; Zhang, Z., Abelian integrals for quadratic centers having almost all their orbits formed by cubics, Sci. China Ser. A, 45, 964-974, (2002) · Zbl 1107.34312
[31] Zhao, Y.; Zhang, Z., Linear estimate of the number of zeros of abelian integrals for a kind of quartic Hamiltonians, J. Differential Equations, 155, 73-88, (1999) · Zbl 0961.34016
[32] Zhou, X.; Li, C., On the algebraic structure of abelian integrals for a kind of perturbed cubic Hamiltonian systems, J. Math. Anal. Appl., 359, 209-215, (2009) · Zbl 1180.34033
[33] Zhou, X.; Li, C., Estimate of the number of zeros of abelian integrals for a kind of quartic Hamiltonians with two centers, Appl. Math. Comput., 204, 202-209, (2008) · Zbl 1156.37013
[34] Zhu, H.; Rousseau, C., Finite cyclicity of graphics with a nilpotent singularity of saddle or elliptic type, J. Differential Equations, 178, 325-436, (2002) · Zbl 1012.34028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.