Infinitely many solutions for a gauged nonlinear Schrödinger equation. (English) Zbl 1411.35098

Summary: This paper is concerned with a gauged nonlinear Schrödinger equation \[ - \Delta u + \omega u + \left(\frac{h^2(| x |)}{| x |^2} + \int_{| x |}^\infty \frac{h(s)}{s} u^2(s) d s\right) u = f(| x |, u)\quad\text{in }\mathbb{R}^2 . \] Under some suitable conditions on the nonlinearity \(f\), we obtain two new existence results of infinitely many high energy solutions by using variational methods, and our results generalize and improve the recent result in the literature.


35J10 Schrödinger operator, Schrödinger equation
35J20 Variational methods for second-order elliptic equations
Full Text: DOI


[1] Jackiw, R.; Pi, S. Y., Soliton solutions to the gauged nonlinear Schrödinger equations, Phys. Rev. Lett., 64, 2969-2972, (1990) · Zbl 1050.81526
[2] Jackiw, R.; Pi, S. Y., Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42, 3500-3513, (1990)
[3] Byeon, J.; Huh, H.; Seok, J., Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263, 1575-1608, (2012) · Zbl 1248.35193
[4] Byeon, J.; Huh, H.; Seok, J., On standing waves with a vortex point of order \(N\) for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261, 1285-1316, (2016) · Zbl 1342.35321
[5] Huh, H., Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53, (2012) · Zbl 1276.81053
[6] Jiang, Y.; Pomponio, A.; Ruiz, D., Standing waves for a gauged nonlinear Schrödinger equation with a vortex point, Commun. Contemp. Math., 18, (2016) · Zbl 1341.35150
[7] Pomponio, A.; Ruiz, D., A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17, 1463-1486, (2015) · Zbl 1328.35218
[8] Tang, X. H.; Zhang, J.; Zhang, W., Existence and concentration of solutions for the Chern-Simons-Schrödinger system with general nonlinearity, Results Math., 71, 643-655, (2017) · Zbl 1376.35026
[9] Deng, Y. B.; Peng, S. J.; Shuai, W., Nodal standing waves for a gauged nonlinear Schrödinger equation in \(\mathbb{R}^2\), J. Differential Equations, 264, 4006-4035, (2018) · Zbl 1383.35064
[10] Li, G. B.; Luo, X.; Shuai, W., Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455, 1559-1578, (2017) · Zbl 1375.35199
[11] Cunha, P. L.; d’Avenia, P.; Pomponio, A.; Siciliano, G., A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differential Equations Appl., 22, 1381-1850, (2015) · Zbl 1330.35397
[12] Pomponio, A.; Ruiz, D., Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53, 289-316, (2015) · Zbl 1331.35326
[13] Wan, Y. Y.; Tan, J. G., Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition, J. Math. Anal. Appl., 415, 422-434, (2014) · Zbl 1314.35174
[14] Zhang, J.; Zhang, W.; Tang, X. H., Ground state solutions for Hamiltonian elliptic system with inverse square potential, Discrete Contin. Dyn. Syst., 37, 4565-4583, (2017) · Zbl 1370.35111
[15] Willem, M., Minimax theorems, (1996), Birkhäuser Berlin · Zbl 0856.49001
[16] Rabinowitz, P. H., Minimax methods in critical point theory with applications to differential equations, (CBMS Reg. Conf. Ser. in Math., vol. 65, (1986), Amer. Math. Soc. Providence, RI) · Zbl 0609.58002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.