×

NRMC – a GPU code for \(N\)-reverse Monte Carlo modeling of fluids in confined media. (English) Zbl 1411.76004

Summary: NRMC is a parallel code for performing \(N\)-Reverse Monte Carlo modeling of fluids in confined media [V. Sánchez-Gil et al., “Reverse Monte Carlo modeling in confined systems”, J. Chem. Phys. 140, No. 2, 024504 (2014; doi:10.1063/1.4861042)]. This method is an extension of the usual Reverse Monte Carlo method to obtain structural models of confined fluids compatible with experimental diffraction patterns, specifically designed to overcome the problem of slow diffusion that can appear under conditions of tight confinement. Most of the computational time in \(N\)-Reverse Monte Carlo modeling is spent in the evaluation of the structure factor for each trial configuration, a calculation that can be easily parallelized. Implementation of the structure factor evaluation in NVIDIA\(^{\circledR}\) CUDA so that the code can be run on GPUs leads to a speed up of up to two orders of magnitude.

MSC:

76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76S05 Flows in porous media; filtration; seepage

Software:

NRMC; LAPACK; CUDA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gelb, L. D.; Gubbins, K. E.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M., Rep. Progr. Phys., 62, 1573-1659 (1999)
[2] Alba-Simionesco, C.; Coasne, B.; Dosseh, G.; Dudziak, G.; Gubbins, K. E.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M., J. Phys.: Condens. Matter, 18, R15 (2006)
[3] Smit, B.; Maesen, T. L. M., Chem. Rev., 108, 4125 (2008)
[4] Pellenq, R. J.-M.; Nicholson, D., Langmuir, 95, 1626 (1995)
[5] Sánchez-Gil, V.; Noya, E. G.; Guil, J. M.; Lomba, E.; Valencia, S., Micropor. Mesopor. Mat., 222, 218-225 (2016)
[6] Floquet, N.; Coulomb, J. P.; Bellat, J. P.; Simon, J. M.; Weber, G.; Andre, G., J. Phys. Chem. C, 111, 18182 (2007)
[7] Rietveld, H. M., J. Appl. Crystallogr., 2, 65 (1965)
[8] McGreevy, R. L.; Pusztai, L., Mol. Simul., 1, 359 (1988)
[9] McGreevy, R. L., J. Phys.: Condens. Matter, 13, R887 (2001)
[10] Sánchez-Gil, V.; Noya, E. G.; Lomba, E., J. Chem. Phys., 140, 024504 (2014)
[11] Sánchez-Gil, V.; Noya, E. G.; Guil, J. M.; Lomba, E.; Valencia, S.; da Silva, I.; Pusztai, L.; Temleitner, L., J. Phys. Chem. C, 120, 2260 (2016)
[12] Sánchez-Gil, V.; Noya, E. G.; Sanz, A.; Khatib, S. J.; Guil, J. M.; Lomba, E.; Marguta, R. G.; Valencia, S., J. Phys. Chem. C, 120, 8640-8652 (2016)
[13] Mellergård, A.; McGreevy, R. L., Acta Crystallogr., A55, 783 (1999)
[14] Brown, P. J.; Fox, A. G.; Maslen, E. N.; O’Keefe, M. A.; Willis, B. T. M., Int. Tables Crystallogr., C, 554-595 (2006)
[16] Sears, V. F., Neutron news, 3, 29 (1992)
[18] McCusker, L. B.; von Dreele, R. B.; Cox, D. E.; Louër, D.; Scardi, P., J. Appl. Crystallogr., 32, 36-50 (1999)
[19] Caglioti, G.; Paoletti, A.; Ricci, F. P., Nucl. Instrum. Methods, 3, 223 (1958)
[20] Materials Studio, version 5.0.0.0 (2009), Accelrys Software Inc.: Accelrys Software Inc. San Diego, CA
[21] Ikeda, S.; Carpenter, J. M., Nucl. Instrum. Methods Phys. Res., 239, 536-544 (1985)
[22] Dreele, R. B. V.; Jorgensen, J. D.; Windsor, C. G., J. Appl. Crystallogr., 15, 581-589 (1982)
[23] McCusker, L. B.; Dreele, R. B. V.; Cox, D. E.; Louër, D.; Scardi, P., J. Appl. Crystallogr., 32, 36-50 (1999)
[24] Hannon, A. C., Nucl. Instrum. Methods Phys. Res. A, 551, 88-107 (2005)
[25] Snurr, R. Q.; Bell, A. T.; Theodorou, D. N., J. Phys. Chem., 97, 13742 (1993)
[26] Llewellyn, P. L.; Coulomb, J.-P.; Grillet, Y.; Patarin, J.; Lauter, H.; Reichert, H.; Rouquerol, J., Langmuir, 9, 1846 (1998)
[27] García-Pérez, E.; Parra, J. B.; Ania, C. O.; Dubbeldam, D.; Vlugt, T. J. H.; Castillo, J. M.; Merkling, P. J.; Calero, S., J. Phys. Chem. C, 112, 9976 (2008)
[28] Clark, D. E., Evolutionary Algorithms in Molecular Design (2000), John Wiley & Sons: John Wiley & Sons Weinheim, Germany
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.