Modeling of slightly-compressible isentropic flows and compressibility effects on fluid-structure interactions. (English) Zbl 1411.76076

Summary: In this study, an aeroacoustic fluid model for slightly-compressible isentropic flows is developed and evaluated for its compressibility effects in the context of fluid-structure interactions. This model considers computational feasibility and accuracy by adding compressibility terms directly on the incompressible form of Navier-Stokes equation. Rather than solving for the full compressible form, our slightly-compressible form significantly reduces the complications in establishing stabilization and implementation of its finite element procedure, and yet still captures the fluctuating acoustic waves expected in the compressible form. Using this approach, we demonstrate that generations and propagations of acoustic waves can be accurately captured, without the inclusion of a fully compressible representation of the fluid. Upon the successful verification of its accuracy against analytical and known solutions, we then evaluate the fluid compressibility effect on fluid-structure interactions. Our results show that comparing to an incompressible fluid, a deformable solid generates sound waves while it is driven by the flow and vibrates in the fluid. A periodic volume change in the fluid is also observed, which can be considered as a sound source.


76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76N15 Gas dynamics (general theory)


Full Text: DOI


[1] Colonius, T.; Lele, S. K., Computational aeroacoustics: progress on nonlinear problems of sound generation, Prog Aerosp Sci, 40, 6, 345-416, (2004)
[2] Daily, D. J.; Thomson, S. L., Acoustically-coupled flow-induced vibration of a computational vocal fold model, Comput Struct, 116, 50-58, (2013)
[3] Ewert, R.; Schröder, W., Acoustic perturbation equations based on flow decomposition via source filtering, J Comput Phys, 188, 2, 365-398, (2003) · Zbl 1022.76050
[4] Freund, J.; Lele, S.; Moin, P., Numerical simulation of a mach 1.92 turbulent jet and its sound field, AIAA J, 38, 11, 2023-2031, (2000)
[5] Guillard, H.; Viozat, C., On the behaviour of upwind schemes in the low mach number limit, Comput Fluids, 28, 1, 63-86, (1999) · Zbl 0963.76062
[6] Hardin, J.; Pope, D., An acoustic/viscous splitting technique for computational aeroacoustics, Theor Comput Fluid Dyn, 6, 5-6, 323-340, (1994) · Zbl 0822.76057
[7] Himeno, T.; Watanabe, T.; Nonaka, S.; Naruo, Y.; Inatani, Y., Numerical analysis of sloshing and wave breaking in a small vessel by cip-lsm, JSME Int J Ser B Fluids Thermal Eng, 47, 4, 709-715, (2004)
[8] Hirschberg, A.; Rienstra, S. W., An introduction to aeroacoustics, (2004), Eindhoven University of Technology
[9] Howe, M. S., Acoustics of fluid-structure interactions, (1998), Cambridge university press · Zbl 0921.76002
[10] Irwin, J. C., An acoustic foundation for a fully-coupled aeroelastic and aeroacoustic phonation model using openfoam. Master’s thesis, (2015), Penn State University
[11] Jacobsen, F., Propagation of sound waves in ducts, Advanced acoustics. Advanced acoustics, Lecture note, (2005), Acoustic Technology, Ørsted DTU
[12] Cheng, J.; Yu, F.; Zhang, L. T., Openifem: a high performance modular open-source software of the immersed finite element method for fluid-structure interactions, Comput Methods Eng Sci, 11, 2, (2019)
[13] Kinsler, L. E.; Frey, A. R.; Coppens, A. B.; Sanders, J. V., Fundamentals of acoustics, (1999), Wiley-VCH
[14] Kishev, Z. R.; Hu, C.; Kashiwagi, M., Numerical simulation of violent sloshing by a cip-based method, J Mar Sci Technol, 11, 2, 111-122, (2006)
[15] Lighthill, M. J., On sound generated aerodynamically I. General theory, Proc R Soc Lond A, 211, 1107, 564-587, (1952) · Zbl 0049.25905
[16] Lighthill, M. J., On sound generated aerodynamically. II. Turbulence as a source of sound, Proc R Soc Lond A, 222, 1148, 1-32, (1954) · Zbl 0055.19109
[17] Lyrintzis, A. S., Surface integral methods in computational aeroacoustics from the (cfd) near-field to the (acoustic) far-field, Int J Aeroacoust, 2, 2, 95-128, (2003)
[18] Morse, P. M., Theoretical acoustics, (1986), Princeton University Press
[19] Munz, C.-D.; Dumbser, M.; Roller, S., Linearized acoustic perturbation equations for low mach number flow with variable density and temperature, J Comput Phys, 224, 1, 352-364, (2007) · Zbl 1261.76049
[20] Olson, L. G.; Bathe, K.-J., A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems, Nucl Eng Des, 76, 2, 137-151, (1983)
[21] Pierce, A. D., Acoustics: an introduction to its physical principles and applications, (1981), McGraw-Hill New York
[22] Ross, M. R., Coupling and simulation of acoustic fluid-structure interaction systems using localized lagrange multipliers. Ph.D. thesis, (2006), University of Colorado
[23] Ross, M. R.; Sprague, M. A.; Felippa, C. A.; Park, K., Treatment of acoustic fluid-structure interaction by localized lagrange multipliers and comparison to alternative interface-coupling methods, Comput Methods Appl Mech Eng, 198, 9-12, 986-1005, (2009) · Zbl 1229.74034
[24] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 3, 856-869, (1986) · Zbl 0599.65018
[25] Seo, J.-H.; Moon, Y. J., Perturbed compressible equations for aeroacoustic noise prediction at low mach numbers, AIAA J, 43, 8, 1716-1724, (2005)
[26] Seo, J. H.; Moon, Y. J., Linearized perturbed compressible equations for low mach number aeroacoustics, J Comput Phys, 218, 2, 702-719, (2006) · Zbl 1161.76546
[27] Takewaki, H.; Nishiguchi, A.; Yabe, T., Cubic interpolated pseudo-particle method (cip) for solving hyperbolic-type equations, J Comput Phys, 61, 2, 261-268, (1985) · Zbl 0607.65055
[28] Tezduyar, T., Stabilized finite element formulations for incompressible-flow computations, Adv Appl Mech, 28, 1-44, (1992) · Zbl 0747.76069
[29] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Fluids, 43, 5, 555-575, (2003) · Zbl 1032.76605
[30] Turkel, E.; Fiterman, A.; Van Leer, B., Preconditioning and the limit to the incompressible flow equations, Tech. Rep, (1993), DTIC Document
[31] Wang, C.; Zhang, L. T., Numerical modeling of gas-liquid-solid interactions: gas-liquid free surfaces interacting with deformable solids, Comput Methods Appl Mech Eng, 286, 123-146, (2015) · Zbl 1423.74931
[32] Wang, X.; Wang, C.; Zhang, L. T., Semi-implicit formulation of the immersed finite element method, Comput Mech, 49, 4, 421-430, (2012) · Zbl 1398.74098
[33] Wang, X.; Zhang, L. T., Interpolation functions in the immersed boundary and finite element methods, Comput Mech, 45, 4, 321-334, (2010) · Zbl 1362.74035
[34] Wang, X.; Zhang, L. T., Modified immersed finite element method for fully-coupled fluid-structure interactions, Comput Methods Appl Mech Eng, 267, 150-169, (2013) · Zbl 1286.74034
[35] Wesseling, P., Principles of computational fluid dynamics, vol. 29, (2009), Springer Science & Business Media · Zbl 1185.76005
[36] Wilkes, D. R.; Duncan, A. J., Acoustic coupled fluid-structure interactions using a unified fast multipole boundary element method, J Acoust Soc Am, 137, 4, 2158-2167, (2015)
[37] Williams, J. F.; Hawkings, D. L., Sound generation by turbulence and surfaces in arbitrary motion, Phil Trans R Soc Lond A, 264, 1151, 321-342, (1969) · Zbl 0182.59205
[38] Yabe, T.; Wang, P.-Y., Unified numerical procedure for compressible and incompressible fluid, J Phys Soc Jpn, 60, 7, 2105-2108, (1991)
[39] Yang, J.; Wang, X.; Krane, M.; Zhang, L. T., Fully-coupled aeroelastic simulation with fluid compressibility for application to vocal fold vibration, Comput Methods Appl Mech Eng, 315, 584-606, (2017)
[40] Zhang, L.; Gay, M., Immersed finite element method for fluid-structuure interactions, J Fluids Struct, 23, 839-857, (2007)
[41] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W., Immersed finite element method, Comput Methods Appl Mech Eng, 193, 2051-2067, (2004) · Zbl 1067.76576
[42] Zhang, L.; Wagner, G.; Liu, W., A parallized meshfree method with boundary enrichment for large-scale CFD, J Comput Phys, 176, 483-506, (2002) · Zbl 1060.76096
[43] Zhang, L. T.; Wang, C.; Wang, X., The development and advances of the immersed finite element method, Contem Math, 628, 37-57, (2014) · Zbl 1311.74134
[44] Zhang, L. T., Modeling of Soft Tissues Interacting with Fluid (Blood or Air) Using the Immersed Finite Element Method, J Biomed Sci Eng, 7, 3, 130, (2014)
[45] Zhang, LT; Gay, M., Imposing rigidity constraints on immersed objects in unsteady fluid flows, Comput Mech, 42, 3, 357-370, (2008) · Zbl 1194.76146
[46] Zhang, L. T.; Wang, X.; Wang, C., Advancements in the Immersed Finite‐Element Method and Bio‐Medical Applications, Multiscale Simulations and Mechanics of Biological Materials, 207-217, (April 2013), John Wiley & Sons Lt.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.