×

Random differences in Szemerédi’s theorem and related results. (English) Zbl 1414.11018

Summary: We introduce a new, elementary method for studying random differences in arithmetic progressions and convergence phenomena along random sequences of integers. We apply our method to obtain significant improvements on two results. The first improvement is the following.
Let \(\ell\) be a positive integer and \(\{{\mathbf u}_{1}\geq {\mathbf u}_{2}\geq \cdots\}\) be a decreasing sequence of probabilities satisfying \({\mathbf u}_{n} \cdot n^{1/(\ell+1)}\to \infty\). Let \(R = R^{\omega}\) be the random sequence obtained by selecting the natural number n with probability \(u_{n}\). Then every set \(A\) of natural numbers with positive upper density contains an arithmetic progression \(a, a+r, a+2r,\dotsc, a+\ell r\) of length \(\ell + 1\) with difference \(r\in R^{\omega}\). The best previous result (by M. Christ and us) was the condition \({\mathbf u}_{n}{\cdot}n^{2-\ell+1}\to \infty\) with a logarithmic rate. The new bound is better when \(\ell\geq 4\).
Our second improvement concerns almost everywhere convergence of double ergodic averages. We construct a (random) sequence \(\{r_{1} < r_{2} < \cdots \}\) of positive integers such that \(r_{n}/n^{2-\varepsilon}\to \infty\) for all \(\varepsilon > 0\) and, for any measure preserving transformation \(T\) of a probability space, the averages \[ \frac{1}{N}\sum_{n < N} {T^n}{F_1}(x) T^{r_n}F_2(x) \] converge for almost every \(x\). Our best previous result was the growth rate \(r_{n}/n^{(1+1/14)-\varepsilon}\to \infty\) of the sequence \(\{r_{n}\}\).

MSC:

11B25 Arithmetic progressions
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)
11B30 Arithmetic combinatorics; higher degree uniformity
05D40 Probabilistic methods in extremal combinatorics, including polynomial methods (combinatorial Nullstellensatz, etc.)
60F15 Strong limit theorems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Amer. Math. Soc. 9 (1996), 725-753. · Zbl 0870.11015
[2] M. Boshernitzan, Homogeneously distributed sequences and Poincaré sequences of integers of sublacunary growth, Monats. Math. 96 (1983), 173-181. · Zbl 0517.10051
[3] J. Bourgain, Ruzsa’s problem on sets of recurrence, Israel J. Math. 59 (1987), 150-166. · Zbl 0643.10045
[4] J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), 39-72. · Zbl 0642.28010
[5] J. Bourgain, Double recurrence and almost sure convergence, J. Reine Angew. Math. 404 (1990), 140-161 · Zbl 0685.28008
[6] J. Brüdern and A. Perelli, Goldbach numbers in sparse sequences, Ann. Inst. Fourier (Grenoble) 48 (1998), 353-378. · Zbl 0902.11042
[7] M. Christ, On random multilinear operator inequalities, arXiv:1108.5655[math. CA]. · Zbl 0643.10045
[8] D. Conlon and W. T. Gowers, Combinatorial theorems in sparse random sets, Ann. of Math., to appear. · Zbl 1351.05204
[9] J. P. Conze and E. Lesigne, Théorèmes ergodiques pour des mesures diagonales, Bull. Soc. Math. France 112 (1984), 143-175. · Zbl 0595.28018
[10] J. M. Derrien and E. Lesigne, Un théorème ergodique polynomial ponctuel pour les endomorphismes exacts et les K-systèmes, Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), 765-778. · Zbl 0868.60028
[11] P. Erdős and A. Sárközy, On differences and sums of integers. I, J. Number Theory 10 (1978), 430-450. · Zbl 0404.10029
[12] P. Erdős and A. Sárközy, On differences and sums of integers. II, Bull. Soc. Math. Grèce (N. S.) 18 (1977), 204-223. · Zbl 0413.10049
[13] N. Frantzikinakis, Multiple recurrence and convergence for Hardy sequences of polynomial growth, J. Analyse Math. 112 (2010), 79-135. · Zbl 1211.37008
[14] N. Frantzikinakis, B. Host, and B. Kra, Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math. 611 (2007), 131-144. · Zbl 1126.37005
[15] N. Frantzikinakis, E. Lesigne, and M. Wierdl, Sets of k-recurrence but not (k+1)-recurrence, Ann. Inst. Fourier (Grenoble) 56 (2006), 839-849. · Zbl 1123.37001
[16] N. Fratzikinakis, E. Lesigne, and W. Wierdl, Random sequences and pointwise convergence of multiple ergodic averages, Indiana Univ. Math. J. 61 (2012), 585-617. · Zbl 1281.37006
[17] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204-256. · Zbl 0347.28016
[18] N. Frantzikinakis and M. Wierdl, A Hardy field extension of Szemerédi’s theorem, Adv. Math. 222 (2009), 1-43. · Zbl 1182.37007
[19] B. Host and B. Kra, Convergence of Conze-Lesigne averages, Ergodic Theory Dynam. Systems 21 (2001), 493-509. · Zbl 0995.37003
[20] B. Host and B. Kra, Convergence of polynomial ergodic averages, Israel J. Math. 149 (2005), 1-19. · Zbl 1085.28009
[21] B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), 397-488. · Zbl 1077.37002
[22] R. L. Jones, M. Lacey, and M. Wierdl, Integer sequences with big gaps and the pointwise ergodic theorem, Ergodic Theory Dynam. Systems 19 (1999), 1295-1308. · Zbl 0941.28013
[23] A. A. Karacuba, Estimates of trigonometric sums by the method of I. M. Vinogradov, and their applications, Trudy Mat. Inst. Steklov 112 (1971), 241-255; (errata insert) 388.
[24] A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math. 146 (2005), 303-315. · Zbl 1080.37002
[25] E. Lesigne, Équations fonctionnelles, couplages de produits gauches et theóremes ergodiques pour mesures diagonales, Bull. Soc. Math. France 121 (1993), 315-351. · Zbl 0798.28008
[26] V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, New York-Heidelberg, 1975. · Zbl 0322.60043
[27] A. Sárközy, On difference sets of sequences of integers. I, Acta Math. Acad. Sci. Hungar. 31 (1978), 125-149. · Zbl 0387.10033
[28] A. Sárközy, On difference sets of sequences of integers. III, Acta Math. Acad. Sci. Hungar. 31 (1978), 355-386. · Zbl 0387.10034
[29] Szemerédi, E., On sets of integers containing no k elements in arithemetic progression, 503-505 (1975), Montreal, Que
[30] E. Szemerédi, On sets of integers containing no k elements in arithemetic progression, Acta Arith. 27 (1975), 199-245. · Zbl 0303.10056
[31] P. Varnavides, On certain sets of positive density, J. London Math. Soc. 34 (1959), 358-360. · Zbl 0088.25702
[32] M. Wierdl, Almost everywhere convergence and recurrence along subsequences in ergodic theory, Ph. D. thesis, The Ohio State University, 1989.
[33] T. D. Wooley and T. D. Ziegler, Multiple recurrence and convergence along the primes, Amer. J. Math. 134 (2012), 1705-1732. · Zbl 1355.11005
[34] T. Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), 53-97. · Zbl 1198.37014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.