×

Aggregated negative feedback in a generalized Lorenz model. (English) Zbl 1414.34011


MSC:

34A34 Nonlinear ordinary differential equations and systems
93B52 Feedback control
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations

Software:

RODES
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Anthes, R. [2011] “Turning the tables on chaos: Is the at-mosphere more predictable than we assume?” UCAR Magazine, spring/summer, available at: https://news.ucar.edu/4505/turning-tables-chaos-atmosphere-more-predictable-we-assume (last access: 26 November 2018).
[2] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers, 593, (1978), McGraw-Hill: McGraw-Hill, NY · Zbl 0938.34001
[3] Blender, R.; Lucarini, V., Nambu representation of an extended Lorenz model with viscous heating, Physica D, 243, 86-91, (2013) · Zbl 1352.76010
[4] Curry, J. H., Generalized Lorenz systems, Commun. Math. Phys., 60, 193-204, (1978) · Zbl 0387.76052
[5] Curry, J. H.; Herring, J. R.; Loncaric, J.; Orszag, S. A., Order and disorder in two- and three-dimensional Benard convection, J. Fluid Mech., 147, 1-38, (1984) · Zbl 0547.76093
[6] Faghih-Naini, S.; Shen, B.-W., Quasi-periodic in the five-dimensional non-dissipative Lorenz model: The role of the extended nonlinear feedback loop, Int. J. Bifurcation and Chaos, 28, 1850072-1-20, (2018) · Zbl 1394.34028
[7] Fay, T. H.; Graham, S. D., Coupled spring equations, Int. J. Math. Educ. Sci. Technol., 34, 65-79, (2003)
[8] Felicio, C. C.; Rech, P. C., On the dynamics of five- and six-dimensional Lorenz models, J. Phys. Commun., 2, 025028, (2018)
[9] Floratos, E., Matrix quantization of turbulence, Int. J. Bifurcation and Chaos, 22, 1250213-1-8, (2012) · Zbl 1258.37036
[10] Gleick, J., Chaos: Making a New Science, 360, (1987), Penguin: Penguin, NY
[11] Guckenheimer, J.; Williams, R. F., Structural stability of Lorenz attractors, Publ. Math. IHES, 50, 59, (1979) · Zbl 0436.58018
[12] Hermiz, K. B.; Guzdar, P. N.; Finn, J. M., Improved low-order model for shear flow driven by Rayleigh-Benard convection, Phys. Rev. E, 51, 325-331, (1995)
[13] Hirsch, M.; Smale, S.; Devaney, R. L., Differential Equations, Dynamical Systems, and an Introduction to Chaos, 432, (2013), Academic Press
[14] Howard, L. N.; Krishnamurti, R. K., Large-scale flow in turbulent convection: A mathematical model, J. Fluid Mech., 170, 385-410, (1986) · Zbl 0606.76053
[15] Jordan, D. W.; Smith, P., Nonlinear Ordinary Differential Equations. An Introduction for Scientists and Engineers, 560, (2007), Oxford University Press: Oxford University Press, NY
[16] Kreyszig, E., Advanced Engineering Mathematics, 1113, (2011), John Wiley & Sons Inc
[17] Lorenz, E., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, (1963) · Zbl 1417.37129
[18] Lorenz, E. N., The predictability of a flow which possesses many scales of motion, Tellus, 21, 289-307, (1969)
[19] Lorenz, E. N., Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?, Proc. 139th Meeting of AAAS Section on Environmental Sciences, New Approaches to Global Weather: GARP, 5, (1972), AAAS: AAAS, Cambridge, MA
[20] Lorenz, E. N., The Essence of Chaos, 227, (1993), University of Washington Press: University of Washington Press, Seattle · Zbl 0835.58001
[21] Lorenz, E. N., Seminar on Predictability, I, Predictability a problem partly solved, (1996), ECMWF
[22] Lorenz, E. N., Designing chaotic models, J. Atmos. Sci., 62, 1574-1587, (2005)
[23] Lorenz, E. N. [2008] “The butterfly effect,” Premio Felice Pietro Chisesi e Caterina Tomassoni award lecture, University of Rome, Rome. · Zbl 1001.37089
[24] Moon, S.; Han, B.-S.; Park, J.; Seo, J. M.; Baik, J.-J., Periodicity and chaos of high-order Lorenz systems, Int. J. Bifurcation and Chaos, 27, 1750176-1-11, (2017) · Zbl 1381.34035
[25] Musielak, Z. E.; Musielak, D. E.; Kennamer, K. S., The onset of chaos in nonlinear dynamical systems determined with a new fractal technique, Fractals, 13, 19-31, (2005)
[26] Nambu, Y., Generalized Hamiltonian dynamics, Phys. Rev. D, 7, 2403, (1973)
[27] Nevir, P.; Blender, R., Hamiltonian and Nambu representation of the non-dissipative Lorenz equations, Beitraege zur Physik der Atmosphaere, 67, 133-140, (1994)
[28] Pelino, V.; Maimone, F.; Pasini, A., Energy cycle for the Lorenz attractor, Chaos Solit. Fract., 64, 67-77, (2014) · Zbl 1348.37092
[29] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in C, 994, (1992), Cambridge University Press · Zbl 0845.65001
[30] Qi, G.; Liang, X., Force analysis of Qi chaotic system, Int. J. Bifurcation and Chaos, 26, 1650237-1-13, (2016) · Zbl 1357.34031
[31] Qi, G., Energy cycle of brushless DC motor chaotic system, Appl. Math. Model., 51, 686-697, (2017)
[32] Roupas, Z., Phase space geometry and chaotic attractors in dissipative Nambu mechanics, J. Phys. A — Math. Theor., 45, 195101, (2012) · Zbl 1310.70026
[33] Roy, D.; Musielak, Z. E., Generalized Lorenz models and their routes to chaos. I. Energy-conserving vertical mode truncations, Chaos Solit. Fract., 32, 1038-1052, (2007) · Zbl 1127.37054
[34] Roy, D.; Musielak, Z. E., Generalized Lorenz models and their routes to chaos. II. Energy-conserving horizontal mode truncations, Chaos Solit. Fract., 31, 747-756, (2007) · Zbl 1140.37368
[35] Roy, D.; Musielak, Z. E., Generalized Lorenz models and their routes to chaos. III. Energy-conserving horizontal and vertical mode truncations, Chaos Solit. Fract., 33, 1064-1070, (2007) · Zbl 1133.37312
[36] Saltzman, B., Finite amplitude free convection as an initial value problem, J. Atmos. Sci., 19, 329-341, (1962)
[37] Shen, B.-W.; Atlas, R.; Reale, O.; Lin, S.-J.; Chern, J.-D.; Chang, J.; Henze, C.; Li, J.-L., Hurricane forecasts with a global mesoscale-resolving model: Preliminary results with hurricane Katrina (2005), Geophys. Res. Lett., 33, (2006)
[38] Shen, B.-W.; Tao, W.-K.; Wu, M.-L., African easterly waves in 30-day high-resolution global simulations: A case study during the 2006 NAMMA period, Geophys. Res. Lett., 37, L18803, (2010)
[39] Shen, B. W.; DeMaria, M.; Li, J.-L. F.; Cheung, S., Genesis of hurricane sandy (2012) simulated with a global mesoscale model, Geophys. Res. Lett., 40, (2013)
[40] Shen, B.-W., Nonlinear feedback in a five-dimensional Lorenz model, J. Atmos. Sci., 71, 1701-1723, (2014)
[41] Shen, B.-W., Nonlinear feedback in a six-dimensional Lorenz model. Impact of an additional heating term, Nonlin. Process. Geophys., 22, 749-764, (2015)
[42] Shen, B.-W., Hierarchical scale dependence associated with the extension of the nonlinear feedback loop in a seven-dimensional Lorenz model, Nonlin. Process. Geophys., 23, 189-203, (2016)
[43] Shen, B.-W., On an extension of the nonlinear feedback loop in a nine-dimensional Lorenz model, Chaot. Model. Simul. (CMSIM), 2, 147-157, (2017)
[44] Shen, B.-W.; Faghih-Naini, S., On recurrent solutions in high-dimensional non-dissipative Lorenz models, The 10th Chaos Modeling and Simulation Int. Conf. (CHAOS2017), (2017)
[45] Shen, B.-W., On periodic solutions in the non-dissipative Lorenz model: The role of the nonlinear feedback loop, Tellus A, 70, 1471912, (2018)
[46] Shen, B.-W.; Pielke, R. A. Sr.; Zeng, X.; Faghih-Naini, S.; Shie, C.-J.; Atlas, R.; Baik, J.-J.; Reyes, T. A. L., Butterfly effects of the first and second kinds in Lorenz models, The 11th Chaos Int. Conf. (CHAOS2018), (2018)
[47] Smale, S., Mathematical problems for the next century, Math. Intell., 20, 7-15, (1998) · Zbl 0947.01011
[48] Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H. L. Jr., Climate Change 2007: The Physical Science Basis, 996, (2007), Cambridge University Press
[49] Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, 269, (1982), Springer: Springer, NY · Zbl 0504.58001
[50] Sprott, J. C., Chaos and Time-Series Analysis, 528, (2003), Oxford University Press
[51] Stewart, I., The Lorenz attractor exists, Nature, 406, 948-949, (2000)
[52] Strogatz, S. H., Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering, 513, (2015), Westview Press: Westview Press, Boulder, CO · Zbl 1343.37001
[53] Thiffeault, J.-L.; Horton, W., Energy-conserving truncations for convection with shear flow, Phys. Fluids, 8, 1715-1719, (1996) · Zbl 1027.76625
[54] Treve, Y. M.; Manley, O. P., Energy conserving Galerkin approximations for 2-D hydrodynamic and MHD Benard convection, Physica D, 4, 319-342, (1982) · Zbl 1194.76144
[55] Tucker, W., A rigorous ODE solver and Smale’s 14th problem, Found. Comput. Math., 2, 53-117, (2002) · Zbl 1047.37012
[56] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317, (1985) · Zbl 0585.58037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.