×

Applications of distance correlation to time series. (English) Zbl 1414.62357

Summary: The use of empirical characteristic functions for inference problems, including estimation in some special parametric settings and testing for goodness of fit, has a long history dating back to the 70s. More recently, there has been renewed interest in using empirical characteristic functions in other inference settings. The distance covariance and correlation, developed by G. J. Székely et al. [Ann. Stat. 35, No. 6, 2769–2794 (2007; Zbl 1129.62059)] and G. J. Székely and M. L. Rizzo [Ann. Appl. Stat. 3, No. 4, 1236–1265 (2009; Zbl 1196.62077)] for measuring dependence and testing independence between two random vectors, are perhaps the best known illustrations of this. We apply these ideas to stationary univariate and multivariate time series to measure lagged auto- and cross-dependence in a time series. Assuming strong mixing, we establish the relevant asymptotic theory for the sample auto- and cross-distance correlation functions. We also apply the auto-distance correlation function (ADCF) to the residuals of an autoregressive processes as a test of goodness of fit. Under the null that an autoregressive model is true, the limit distribution of the empirical ADCF can differ markedly from the corresponding one based on an i.i.d. sequence. We illustrate the use of the empirical auto- and cross-distance correlation functions for testing dependence and cross-dependence of time series in a variety of contexts.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60E10 Characteristic functions; other transforms
60G10 Stationary stochastic processes
62E20 Asymptotic distribution theory in statistics
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T. and Weiss, B. (1996). Strong laws for \(L\)- and \(U\)-statistics. Trans. Amer. Math. Soc. 348 2845-2866. · Zbl 0863.60032 · doi:10.1090/S0002-9947-96-01681-9
[2] Bickel, P.J. and Wichura, M.J. (1971). Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Stat. 42 1656-1670. · Zbl 0265.60011 · doi:10.1214/aoms/1177693164
[3] Brockwell, P.J. and Davis, R.A. (1991). Time Series : Theory and Methods , 2nd ed. Springer Series in Statistics . New York: Springer. · Zbl 0709.62080
[4] Csörgő, S. (1981). Limit behaviour of the empirical characteristic function. Ann. Probab. 9 130-144. · Zbl 0453.60025
[5] Csörgő, S. (1981). Multivariate characteristic functions and tail behaviour. Z. Wahrsch. Verw. Gebiete 55 197-202. · Zbl 0438.60024
[6] Csörgő, S. (1981). Multivariate empirical characteristic functions. Z. Wahrsch. Verw. Gebiete 55 203-229. · Zbl 0438.60025
[7] Davis, R.A., Matsui, M., Mikosch, T. and Wan, P. (2017). Supplement to “Applications of distance correlation to time series.” DOI:10.3150/17-BEJ955SUPP . · Zbl 1414.62357
[8] Doukhan, P. (1994). Mixing : Properties and Examples. Lecture Notes in Statistics 85 . New York: Springer. · Zbl 0801.60027
[9] Dueck, J., Edelmann, D., Gneiting, T. and Richards, D. (2014). The affinely invariant distance correlation. Bernoulli 20 2305-2330. · Zbl 1320.62133 · doi:10.3150/13-BEJ558
[10] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II , 2nd ed. New York: Wiley. · Zbl 0219.60003
[11] Feuerverger, A. (1993). A consistent test for bivariate dependence. Int. Stat. Rev. 61 419-433. · Zbl 0826.62032 · doi:10.2307/1403753
[12] Feuerverger, A. and Mureika, R.A. (1977). The empirical characteristic function and its applications. Ann. Statist. 5 88-97. · Zbl 0364.62051 · doi:10.1214/aos/1176343742
[13] Fokianos, K. and Pitsillou, M. (2017). Consistent testing for pairwise dependence in time series. Technometrics 59 262-270.
[14] Haslett, J. and Raftery, A.E. (1989). Space-time modelling with long-memory dependence: Assessing Ireland’s wind power resource. J. R. Stat. Soc. Ser. C. Appl. Stat. 38 1-50.
[15] Hlávka, Z., Hušková, M. and Meintanis, S.G. (2011). Tests for independence in non-parametric heteroscedastic regression models. J. Multivariate Anal. 102 816-827. · Zbl 1327.62258
[16] Hong, Y. (1999). Hypothesis testing in time series via the empirical characteristic function: A generalized spectral density approach. J. Amer. Statist. Assoc. 94 1201-1220. · Zbl 1072.62632 · doi:10.1080/01621459.1999.10473874
[17] Ibragimov, I.A. and Linnik, Y.V. (1971). Independent and Stationary Sequences of Random Variables . Groningen: Wolters-Noordhoff Publishing. · Zbl 0219.60027
[18] Krengel, U. (1985). Ergodic Theorems. De Gruyter Studies in Mathematics 6 . Berlin: de Gruyter. · Zbl 0575.28009
[19] Kuo, H.H. (1975). Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics 463 . Berlin: Springer. · Zbl 0306.28010
[20] Lyons, R. (2013). Distance covariance in metric spaces. Ann. Probab. 41 3284-3305. · Zbl 1292.62087 · doi:10.1214/12-AOP803
[21] Meintanis, S.G. and Iliopoulos, G. (2008). Fourier methods for testing multivariate independence. Comput. Statist. Data Anal. 52 1884-1895. · Zbl 1452.62389 · doi:10.1016/j.csda.2007.06.005
[22] Meintanis, S.G., Ngatchou-Wandji, J. and Taufer, E. (2015). Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function. J. Multivariate Anal. 140 171-192. · Zbl 1327.60045 · doi:10.1016/j.jmva.2015.05.006
[23] Politis, D.N., Romano, J.P. and Wolf, M. (1999). Subsampling. Springer Series in Statistics . New York: Springer. · Zbl 0931.62035
[24] Rémillard, B. (2009). Discussion of: Brownian distance covariance [MR2752127]. Ann. Appl. Stat. 3 1295-1298. · Zbl 1454.62178 · doi:10.1214/09-AOAS312F
[25] Samorodnitsky, G. (2016). Stochastic Processes and Long Range Dependence. Springer Series in Operations Research and Financial Engineering . Cham: Springer. · Zbl 1376.60007
[26] Sejdinovic, D., Sriperumbudur, B., Gretton, A. and Fukumizu, K. (2013). Equivalence of distance-based and RKHS-based statistics in hypothesis testing. Ann. Statist. 41 2263-2291. · Zbl 1281.62117 · doi:10.1214/13-AOS1140
[27] Székely, G.J. and Rizzo, M.L. (2009). Brownian distance covariance. Ann. Appl. Stat. 3 1236-1265. · Zbl 1196.62077 · doi:10.1214/09-AOAS312
[28] Székely, G.J. and Rizzo, M.L. (2014). Partial distance correlation with methods for dissimilarities. Ann. Statist. 42 2382-2412. · Zbl 1309.62105 · doi:10.1214/14-AOS1255
[29] Székely, G.J., Rizzo, M.L. and Bakirov, N.K. (2007). Measuring and testing dependence by correlation of distances. Ann. Statist. 35 2769-2794. · Zbl 1129.62059 · doi:10.1214/009053607000000505
[30] Zhou, Z. (2012). Measuring nonlinear dependence in time-series, a distance correlation approach. J. Time Series Anal. 33 438-457. · Zbl 1301.62095 · doi:10.1111/j.1467-9892.2011.00780.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.