×

Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints. (English) Zbl 1414.90317

Summary: Multiobjective DC optimization problems arise naturally, for example, in data classification and cluster analysis playing a crucial role in data mining. In this paper, we propose a new multiobjective double bundle method designed for nonsmooth multiobjective optimization problems having objective and constraint functions which can be presented as a difference of two convex (DC) functions. The method is of the descent type and it generalizes the ideas of the double bundle method for multiobjective and constrained problems. We utilize the special cutting plane model angled for the DC improvement function such that the convex and the concave behaviour of the function is captured. The method is proved to be finitely convergent to a weakly Pareto stationary point under mild assumptions. Finally, we consider some numerical experiments and compare the solutions produced by our method with the method designed for general nonconvex multiobjective problems. This is done in order to validate the usage of the method aimed specially for DC objectives instead of a general nonconvex method.

MSC:

90C29 Multi-objective and goal programming
90C26 Nonconvex programming, global optimization
65K05 Numerical mathematical programming methods

Software:

PBNCGC; MPBNGC
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Astorino, A.; Miglionico, G., Optimizing sensor cover energy via DC programming, Optim. Lett., 10, 355-368, (2016) · Zbl 1343.90064
[2] Bagirov, A., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham (2014) · Zbl 1312.90053
[3] Bagirov, A.; Yearwood, J., A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems, Eur. J. Oper. Res., 170, 578-596, (2006) · Zbl 1085.90045
[4] Bello Cruz, JY; Iusem, AN, A strongly convergent method for nonsmooth convex minimization in Hilbert spaces, Numer. Funct. Anal. Optim., 32, 1009-1018, (2011) · Zbl 1232.90319
[5] Bonnel, H.; Iusem, AN; Svaiter, BF, Proximal methods in vector optimization, SIAM J. Optim., 15, 953-970, (2005) · Zbl 1093.90054
[6] Carrizosa, E.; Guerrero, V.; Romero Morales, D., Visualizing data as objects by DC (difference of convex) optimization, Math. Program., (2017) · Zbl 1390.90616
[7] Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) · Zbl 0582.49001
[8] Gadhi, N.; Metrane, A., Sufficient optimality condition for vector optimization problems under DC data, J. Global Optim., 28, 55-66, (2004) · Zbl 1061.90098
[9] Gaudioso, M.; Giallombardo, G.; Miglionico, G.; Bagirov, A., Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations, J. Global Optim., (2017) · Zbl 1418.90201
[10] Gaudioso, M.; Gruzdeva, TV; Strekalovsky, AS, On numerical solving the spherical separability problem, J. Global Optim., 66, 21-34, (2016) · Zbl 1379.90027
[11] Hartman, P., On functions representable as a difference of convex functions, Pac. J. Math., 9, 707-713, (1959) · Zbl 0093.06401
[12] Hiriart-Urruty, JB, Generalized differentiability, duality and optimization for problems dealing with differences of convex functions, Lect. Note Econ. Math. Syst., 256, 37-70, (1985)
[13] Holmberg, K.; Tuy, H., A production-transportation problem with stochastic demand and concave production costs, Math. Program., 85, 157-179, (1999) · Zbl 0956.90020
[14] Horst, R.; Thoai, NV, DC programming: overview, J. Optim. Theory Appl., 103, 1-43, (1999) · Zbl 1073.90537
[15] Ji, Y.; Goh, M.; Souza, R., Proximal point algorithms for multi-criteria optimization with the difference of convex objective functions, J. Optim. Theory Appl., 169, 280-289, (2016) · Zbl 1342.90175
[16] Joki, K.; Bagirov, A.; Karmitsa, N.; Mäkelä, MM, A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes, J. Global Optim., 68, 501-535, (2017) · Zbl 1369.90137
[17] Joki, K., Bagirov, A., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. (2018) (to appear) · Zbl 1401.90170
[18] Kiwiel, KC, An aggregate subgradient method for nonsmooth convex minimization, Math. Program., 27, 320-341, (1983) · Zbl 0525.90074
[19] Kiwiel, KC, A descent method for nonsmooth convex multiobjective minimization, Large Scale Syst., 8, 119-129, (1985) · Zbl 0564.90068
[20] Kiwiel, KC, Proximity control in bundle methods for convex nondifferentiable optimization, Math. Program., 46, 105-122, (1990) · Zbl 0697.90060
[21] Thi, HA; Pham Dinh, T., Solving a class of linearly constrained indefinite quadratic problems by DC algorithms, J. Global Optim., 11, 253-285, (1997) · Zbl 0905.90131
[22] Thi, HA; Pham Dinh, T., The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Annals Oper. Res., 133, 23-46, (2005) · Zbl 1116.90122
[23] Lukšan, L., Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation, Kybernetika, 20, 445-457, (1984) · Zbl 0552.90074
[24] Mäkelä, M.M.: Multiobjective Proximal Bundle Method for Nonconvex Nonsmooth Optimization: Fortran Subroutine MPBNGC 2.0. Technical Representative B 13/2003, Reports of the Department of Mathematical Information Technology, Series B, Scientific computing, University of Jyväskylä, Jyväskylä (2003)
[25] Mäkelä, M.M., Eronen, V.P., Karmitsa, N.: On Nonsmooth Multiobjective Optimality Conditions with Generalized Convexities. Tech. Rep. 1056, TUCS Technical Reports, Turku Centre for Computer Science, Turku (2012) · Zbl 1323.49011
[26] Mäkelä, MM; Eronen, VP; Karmitsa, N.; Rassias, TM (ed.); Floudas, CA (ed.); Butenko, S. (ed.), On nonsmooth multiobjective optimality conditions with generalized convexities, 333-357, (2014), Berlin · Zbl 1323.49011
[27] Mäkelä, MM; Karmitsa, N.; Wilppu, O.; Tuovinen, T. (ed.); Repin, S. (ed.); Neittaanmäki, P. (ed.), Proximal bundle method for nonsmooth and nonconvex multiobjective optimization, No. 40, 191-204, (2016), Berlin
[28] Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co., Singapore (1992)
[29] Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999) · Zbl 0949.90082
[30] Miettinen, K.; Mäkelä, MM, Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS, Optimization, 34, 231-246, (1995) · Zbl 0855.90114
[31] Mistakidis, E.S., Stavroulakis, G.E.: Nonconvex Optimization in Mechanics. Smooth and Nonsmooth Algorithms, Heuristics and Engineering Applications by the F.E.M. Kluwer Academic Publisher, Dordrecht (1998) · Zbl 0918.73002
[32] Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.): Topics in Nonsmooth Mechanics. Birkhäuser, Basel (1988) · Zbl 0646.00014
[33] Mukai, H., Algorithms for multicriterion optimization, IEEE Trans. Autom. Control, ac-25, 177-186, (1979) · Zbl 0428.90072
[34] Outrata, J., Koĉvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Theory, Applications and Numerical Results. Kluwer Academic Publishers, Dordrecht (1998) · Zbl 0947.90093
[35] Pham Dinh, T.; Thi, HA, Convex analysis approach to DC programming: Theory, algorithms and applications, Acta Math. Vietnam., 22, 289-355, (1997) · Zbl 0895.90152
[36] Qu, S.; Goh, M.; Wu, SY; Souza, R., Multiobjective DC programs with infinite convex constraints, J. Global Optim., 59, 41-58, (2014) · Zbl 1326.90067
[37] Qu, S.; Liu, C.; Goh, M.; Li, Y.; Ji, Y., Nonsmooth multiobjective programming with quasi-Newton methods, Eur. J. Oper. Res., 235, 503-510, (2014) · Zbl 1305.90374
[38] Schramm, H.; Zowe, J., A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea, convergence analysis, numerical results, SIAM J. Optim., 2, 121-152, (1992) · Zbl 0761.90090
[39] Sun, WY; Sampaio, RJB; Candido, MAB, Proximal point algorithm for minimization of DC functions, J. Comput. Math., 21, 451-462, (2003) · Zbl 1107.90427
[40] Taa, A., Optimality conditions for vector optimization problems of a difference of convex mappings, J. Global Optim., 31, 421-436, (2005) · Zbl 1101.90064
[41] Toland, JF, On subdifferential calculus and duality in nonconvex optimization, Mémoires de la Société Mathématique de France, 60, 177-183, (1979) · Zbl 0417.90088
[42] Wang, S.; Kleinschmidt, P. (ed.); Radermacher, F. (ed.); Sweitzer, W. (ed.); Wildermann, H. (ed.), Algorithms for multiobjective and nonsmooth optimization, No. 58, 131-142, (1989), Kronberg im Taunus
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.