A flexible Bayesian nonparametric model for predicting future insurance claims prediction. (English) Zbl 1414.91201

Summary: Accurate prediction of future claims is a fundamentally important problem in insurance. The Bayesian approach is natural in this context, as it provides a complete predictive distribution for future claims. The classical credibility theory provides a simple approximation to the mean of that predictive distribution as a point predictor, but this approach ignores other features of the predictive distribution, such as spread, that would be useful for decision making. In this article, we propose a Dirichlet process mixture of log-normals model and discuss the theoretical properties and computation of the corresponding predictive distribution. Numerical examples demonstrate the benefit of our model compared to some existing insurance loss models, and an R code implementation of the proposed method is also provided.


91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics


Full Text: DOI


[1] Berger, J. O., Statistical Decision Theory and Bayesian Analysis, (1985), New York: Springer, New York · Zbl 0572.62008
[2] Bühlmann, H., Experience Rating and Credibility, ASTIN Bulletin, 4, 199-207, (1967)
[3] Bühlmann, H.; Gisler, A., A Course in Credibility Theory and Its Applications, (2005), New York: Springer, New York · Zbl 1108.91001
[4] Bühlmann, H.; Straub, E., Glaubwürdigkeit für Schadensätze, Mitteilungen der Vereinigung Schweizerischer Versicherungs-Mathematiker, 70, 111-133, (1970) · Zbl 0197.46502
[5] Cheng, N.; Yuan, T., Nonparametric Bayesian Lifetime Data Analysis Using Dirichlet Process Lognormal Mixture Model, Naval Research Logistics, 60, 208-221, (2013) · Zbl 1407.62360
[6] DasGupta, A., Asymptotic Theory of Statistics and Probability, (2008), New York: Springer, New York · Zbl 1154.62001
[7] Escobar, M. D.; West, M., Bayesian Density Estimation and Inference Using Mixtures, Journal of the American Statistical Association, 90, 577-588, (1995) · Zbl 0826.62021
[8] Escoto, B., Bayesian Claim Severity with Mixed Distributions, Variance, 7, 2, 110-122, (2013)
[9] Fellingham, G. W.; Kottas, A.; Hartman, B., Bayesian Nonparametric Predictive Modeling of Group Health Claims, Insurance: Mathematics and Economics, 60, 1-10, (2015) · Zbl 1308.91080
[10] Ferguson, T. S., Bayesian Analysis of Some Nonparametric Problems, Annals of Statistics, 1, 209-230, (1973) · Zbl 0255.62037
[11] Ghosal, S., Bayesian Nonparametrics, eds. N. L. Hjort, C. Holmes, P. Müller, and S. G. Walker, The Dirichlet Process, Related Priors and Posterior Asymptotics, 35-79, (2010), Cambridge: Cambridge University Press, Cambridge
[12] Ghosal, S.; Ghosh, J. K.; Ramamoorthi, R. V., Posterior Consistency of Dirichlet Mixtures in Density Estimation, Annals of Statistics, 27, 143-158, (1999) · Zbl 0932.62043
[13] Gómez-Déniz, E., A Generalization of the Credibility Theory Obtained by Using the Weighted Balanced Loss Function, Insurance: Mathematics and Economics, 42, 2, 850-854, (2008) · Zbl 1152.91582
[14] Green, P. J.; Richardson, S., Modeling Heterogeneity with and without the Dirichlet Process, Scandinavian Journal of Statistics, 28, 355-375, (2001) · Zbl 0973.62031
[15] Heilmann, W., Decision Theoretic Foundations of Credibility Theory, Insurance: Mathematics and Economics, 8, 1, 77-95, (1989) · Zbl 0687.62087
[16] Hong, L.; Martin, R., Discussion on “Credibility Estimation of Distribution Functions with Applications to Experience Rating in General Insurance.”, North American Actuarial Journal, 20, 1, 95-98, (2016)
[17] Hong, L.; Martin, R., A Review of Bayesian Asymptotics in General Insurance Applications, (2016)
[18] Jeon, Y.; Kim, J. H. T., A Gamma Kernel Density Estimation for Insurance Loss Data, Insurance: Mathematics and Economics, 53, 569-579, (2013) · Zbl 1290.62099
[19] Kalli, M.; Griffin, J. E.; Walker, S. G., Slice Sampling Mixture Models, Statistical Computing, 21, 93-105, (2011) · Zbl 1256.65006
[20] Klugman, S. A., Bayesian Statistics in Actuarial Science with Emphasis on Credibility, (1992), Boston: Kluwer, Boston · Zbl 0753.62075
[21] Kottas, A., Nonparametric Bayesian Survival Analysis Using Mixtures of Weibull Distributions, Journal of Statistical Planning and Inference, 136, 578-596, (2006) · Zbl 1079.62095
[22] Landsman, Z.; Makov, U. E., Credibility Evaluation for the Exponential Dispersion Family, Insurance: Mathematics and Economics, 24, 23-29, (1999) · Zbl 0927.62109
[23] Lau, W. J.; Siu, T. K.; Yang, H., On Bayesian Mixture Credibility, ASTIN Bulletin, 36, 2, 573-388, (2006) · Zbl 1162.91422
[24] Lee, S. C. K.; Lin, X. S., Modeling and Evaluating Insurance Losses via Mixtures of Erlang Distributions, North American Actuarial Journal, 14, 1, 107-130, (2010)
[25] MacEachern, S.; Müller, P., Estimating Mixture of Dirichlet Process Models, Journal of Computational and Graphical Statistics, 7, 223-238, (1998)
[26] Makov, U. E., Bayesian Methods in Actuarial Science, The Statistician, 45, 4, 503-515, (1996)
[27] Makov, U. E., Principal Applications of Bayesian Methods in Actuarial Science, North American Actuarial Journal, 5, 4, 53-57, (2001) · Zbl 1083.62538
[28] McLachlan, G.; Peel, D., Finite Mixture Models, (2000), New York: Wiley-Interscience, New York · Zbl 0963.62061
[29] Müller, P.; Quintana, F. A., Nonparametric Bayesian Data Analysis, Statistical Science, 19, 95-110, (2004) · Zbl 1057.62032
[30] Payandeh Najafabadi, A. T., A New Approach to the Credibility Formula, Insurance: Mathematics and Economics, 46, 334-338, (2010) · Zbl 1231.91224
[31] Rempala, G. A.; Derrig, R. A., Modeling Hidden Exposures in Claim Severity via the EM Algorithm, North American Actuarial Journal, 9, 2, 108-128, (2005) · Zbl 1085.62515
[32] Schwarz, G., Estimating the Dimension of a Model, Annals of Statistics, 6, 461-464, (1978) · Zbl 0379.62005
[33] Sethuraman, J., A Constructive Definition of Dirichlet Priors, Statistica Sinica, 4, 639-650, (1994) · Zbl 0823.62007
[34] Tijms, H., Stochastic Models: An Algorithm Approach, (1994), Hoboken: Wiley, Hoboken
[35] Tokdar, S. T., Posterior Consistency of Dirichlet Location-Scale Mixture of Normals in Density Estimation and Regression, Sankhy\(##?##\), 67, 4, 90-110, (2006) · Zbl 1193.62056
[36] Walker, S. G., Sampling the Dirichlet Mixture Model with Slices, Communications in Statistics–Simulation and Computation, 36, 45-54, (2007) · Zbl 1113.62058
[37] Whitney, A., The Theory of Experience Rating, Proceedings of Casualty Actuarial Society, 4, 274-292, (1918)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.