×

The influence of the chemical composition representation according to the number of species during mixing in high-pressure turbulent flows. (English) Zbl 1415.76302

Summary: Mixing of several species in high-pressure (high-\(p\)) turbulent flows is investigated to understand the influence of the number of species on the flow characteristics. Direct numerical simulations are conducted in the temporal mixing layer configuration at approximately the same value of the momentum ratio for all realizations. The simulations are performed with mixtures of two, three, five and seven species to address various compositions at fixed number of species, at three values of initial vorticity-thickness-based Reynolds number, \(Re_0\), and two values of the free-stream pressure, \(p_0\), which is supercritical for each species except water. The major species are C\(_7\)H\(_{16}\), O\(_2\) and N\(_2\), and the minor species are CO, CO\(_2\), H\(_2\) and H\(_2\)O. The extensive database thus obtained allows the study of the influence not only of \(Re_0\) and \(p_0\), but also of the initial density ratio and of the initial density difference between streams, \(\Delta\rho\). The results show that the layer growth is practically insensitive to all of the above parameters; however, global vortical aspects increase with \(Re_0\), \(p_0\) and the number of species; nevertheless, at the same \(Re_0\), \(p_0\) and density ratio, vorticity aspects are not influenced by the number of species. Species mixing produces strong density gradients which increase with \(p_0\) and otherwise scale with \(\Delta\rho\) but, when scaled by \(\Delta\rho\), are not affected by the number of species. Generalized Korteweg-type equations are developed for a multi-species mixture, and a priori estimates based on the largest density gradient show that the Korteweg stresses, which account for the influence of the density gradient, have negligible contribution in the momentum equation. The species-specific effective Schmidt number, \(Sc_{\alpha,eff}\), is computed and it is found that negative values occur for all minor species - particularly for H\(_2\) – thus indicating uphill diffusion, while the major species experience only regular diffusion. The probability density function (p.d.f.) of \(Sc_{\alpha,eff}\) shows strong variation with \(p_0\) but weak dependence on the number of species; however, the p.d.f. substantially varies with the identity of the species. In contrast, the p.d.f. of the effective Prandtl number indicates dependence on both \(p_0\) and the number of species. Similar to \(Sc_{\alpha,eff}\), the species-specific effective Lewis-number p.d.f. depends on the species, and for all species the mean is smaller than unity, thus invalidating one of the most popular assumptions in combustion modelling. Simplifying the mixture composition by reducing the number of minor species does not affect the crucial species-temperature relationship of the major species that, for accuracy, must be retained in combustion simulations, but this relationship is affected for the minor species and in regions of uphill diffusion, indicating that the reduction is nonlinear in nature.

MSC:

76F25 Turbulent transport, mixing
76V05 Reaction effects in flows
76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Almagro, A.; Garcia-Villalba, M.; Flores, O., A numerical study of a variable-density low-speed turbulent mixing layer, J. Fluid Mech., 830, 569-601, (2017) · Zbl 1421.76109 · doi:10.1017/jfm.2017.583
[2] Anderson, D. M.; Mcfadden, G. B.; Wheeler, A. A., Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 1, 139-165, (1998) · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[3] Batchelor, G. K., An Introduction to Fluid Dynamics, (1999), Cambridge University Press · Zbl 0958.76001
[4] Bellan, J., Direct numerical simulation of a high-pressure turbulent reacting temporal mixing layer, Combust. Flame, 176, 245-262, (2017) · doi:10.1016/j.combustflame.2016.09.026
[5] Bellan, J., From elementary kinetics in perfectly stirred reactors to reduced kinetics utilizable in turbulent reactive flow simulations for combustion devices, Combust. Flame, 184, 286-296, (2017) · doi:10.1016/j.combustflame.2017.06.013
[6] Cahn, J. W., Free energy of a nonuniform system. II. Thermodynamic basis, J. Chem. Phys., 30, 5, 1121-1124, (1959) · doi:10.1063/1.1730145
[7] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 2, 258-267, (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[8] Chehroudi, B.; Talley, D.; Coy, E., Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures, Phys. Fluids, 14, 2, 850-861, (2002) · Zbl 1184.76097 · doi:10.1063/1.1430735
[9] Chung, T. H.; Ajlan, M.; Lee, L. L.; Starling, K. E., Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Ind. Engng Chem. Res., 27, 4, 671-679, (1988) · doi:10.1021/ie00076a024
[10] Cornelisse, P. M. W.1997 The square gradient theory applied – simultaneous modelling of interfacial tension and phase behaviour. PhD thesis, Delft University.
[11] Crua, C.; Heikal, M. R.; Gold, M. R., Microscopic imaging of the initial stage of diesel spray formation, Fuel, 157, 140-150, (2015) · doi:10.1016/j.fuel.2015.04.041
[12] Crua, C.; Manin, J.; Pickett, L. M., On the transcritical mixing of fuels at diesel engine conditions, Fuel, 208, 535-548, (2017) · doi:10.1016/j.fuel.2017.06.091
[13] Dagaut, P.; Cathonnet, M., The ignition, oxidation, and combustion of kerosene: a review of experimental and kinetic modeling, Prog. Energy Combust. Sci., 32, 48-92, (2006) · doi:10.1016/j.pecs.2005.10.003
[14] Edwards, T., Liquid fuels and propellants for aerospace propulsion: 1903-2003, J. Propul. Power, 19, 6, 1089-1107, (2003) · doi:10.2514/2.6946
[15] Edwards, T.; Maurice, L. Q., Surrogate mixtures to represent complex aviation and rocket fuels, J. Propul. Power, 17, 461-466, (2001) · doi:10.2514/2.5765
[16] Edwards, T., Minus, D., Harrison, W. & Corporan, E.2004 Fischer-Tropsch jet fuels – characterization for advanced aerospace applications. AIAA Paper 2004-3885.
[17] Ern, A.; Giovangigli, V., Thermal diffusion effects in hydrogen – air and methane – air flames, Combust. Theor. Model., 2, 349-372, (1998) · Zbl 0944.76092 · doi:10.1088/1364-7830/2/4/001
[18] Falgout, Z.; Rahm, M.; Sedarsky, D.; Linne, M., Gas/fuel jet interfaces under high pressures and temperatures, Fuel, 168, 14-21, (2016) · doi:10.1016/j.fuel.2015.11.061
[19] Falgout, Z.; Rahm, M.; Wang, Z.; Linne, M., Evidence for supercritical mixing layers in the ECN Spray A, Proc. Combust. Inst., 35, 1579-1586, (2015) · doi:10.1016/j.proci.2014.06.109
[20] Gaitonde, D. V. & Visbal, M. R.1998 High-order schemes for Navier-Stokes equations: algorithm and implementation into FDL3DI. Air Force Research Lab Wright-Patterson AFB OH Air Vehicles Directorate AFRL-VA-WP-TR-1998-3060.
[21] Giovangigli, V.; Matuszewsky, L.; Dupoirieux, F., Detailed modeling of planar transcritical H2-O2-N2 flames, Combust. Theor. Model., 15, 141-182, (2011) · Zbl 1219.80121 · doi:10.1080/13647830.2010.527016
[22] Goto, S.; Kida, S., Passive scalar spectrum in isotropic turbulence: prediction by the Lagrangian direct-interaction approximation, Phys. Fluids, 11, 7, 1936-1952, (1999) · Zbl 1147.76398 · doi:10.1063/1.870055
[23] De Groot, S. R.; Mazur, P., Non-equilibrium Thermodynamics, (1984), Dover · Zbl 1375.82004
[24] Hannoun, I. A.; Fernando, H. J. S.; List, E. J., Turbulence structure near a sharp density interface, J. Fluid Mech., 189, 189-209, (1988) · doi:10.1017/S0022112088000965
[25] Harstad, K.; Bellan, J., An all-pressure fluid drop model applied to a binary mixture: heptane in nitrogen, Intl J. Multiphase Flow, 26, 10, 1675-1706, (2000) · Zbl 1137.76608 · doi:10.1016/S0301-9322(99)00108-1
[26] Harstad, K.; Bellan, J., Mixing rules for multicomponent mixture mass diffusion coefficients and thermal diffusion factors, J. Chem. Phys., 120, 12, 5664-5673, (2004) · doi:10.1063/1.1650296
[27] Harstad, K.; Bellan, J., High-pressure binary mass-diffusion coefficients for combustion applications, Ind. Engng Chem. Res., 43, 2, 645-654, (2004) · doi:10.1021/ie0304558
[28] Harstad, K.; Bellan, J., Prediction of premixed, heptane and iso-octane jet flames using a reduced kinetic model based on constituents and species, Combust. Flame, 160, 2404-2421, (2013) · doi:10.1016/j.combustflame.2013.06.005
[29] Hernández, J. J.; Ballesteros, R.; Sanz-Argent, J., Reduction of kinetic mechanisms for fuel oxidation through genetic algorithms, Math. Comput. Model., 52, 1185-1193, (2010) · doi:10.1016/j.mcm.2010.02.035
[30] Hirshfelder, J.; Curtis, C.; Bird, R., Molecular Theory of Gases and Liquids, (1964), John Wiley and Sons
[31] Jagannathan, S.; Donzis, D. A., Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations, J. Fluid Mech., 789, 669-707, (2016) · doi:10.1017/jfm.2015.754
[32] Jamet, D.; Lebaigue, O.; Coutris, N.; Delhaye, J. M., The second gradient method for the direct numerical simulation of liquid – vapor flows with phase change, J. Comput. Phys., 169, 2, 624-651, (2001) · Zbl 1047.76098 · doi:10.1006/jcph.2000.6692
[33] Keizer, J., Statistical Thermodynamics of Nonequilibrium Processes, (1987), Springer · doi:10.1007/978-1-4612-1054-2
[34] Kennedy, C.; Carpenter, M., Several new numerical methods for compressible shear layer simulations, Appl. Numer. Maths, 14, 397-433, (1994) · Zbl 0804.76062 · doi:10.1016/0168-9274(94)00004-2
[35] Korteweg, D. J., Sur la forme que prennent les équations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité, Archives Néerlandaises des Sciences exactes et naturelles, 6, 1-24, (1901) · JFM 32.0756.02
[36] Kourdis, P. D.; Bellan, J., Heavy-alkane oxidation kinetic-mechanism reduction using dominant dynamic variables, self similarity and chemistry tabulation, Combust. Flame, 161, 1196-1223, (2014) · doi:10.1016/j.combustflame.2013.11.012
[37] Lam, S. H., Reduced chemistry-diffusion coupling, Combust. Sci. Technol., 179, 767-786, (2007) · doi:10.1080/00102200601093498
[38] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 1, 16-42, (1992) · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[39] Masi, E.; Bellan, J.; Harstad, K. G.; Okong’O, N. A., Multi-species turbulent mixing under supercritical-pressure conditions: modelling, direct numerical simulation and analysis revealing species spinodal decomposition, J. Fluid Mech., 721, 578-626, (2013) · Zbl 1287.76128 · doi:10.1017/jfm.2013.70
[40] Mayer, W., Schik, A., Schweitzer, C. & Schaeffler, M.1996 Injection and mixing processes in high pressure LOX/GH2 rocket. AIAA Paper 96-2620.
[41] Mayer, W.; Tamura, H., Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine, J. Propul. Power, 12, 1137-1147, (1996) · doi:10.2514/3.24154
[42] Moser, R.; Rogers, M., Mixing transition and the cascade to small scales in a plane mixing layer, Phys. Fluids A, 3, 5, 1128-1134, (1991) · doi:10.1063/1.858094
[43] Mueller, C. J.; Cannella, W. J.; Bays, J. T.; Bruno, T. J.; Defabio, K.; Dettman, H. D.; Gieleciak, R. M.; Huber, M. L.; Kweon, C.-B.; Mcconnell, S. S.; Pitz, W. J.; Ratcliff, M. A., Diesel surrogate fuels for engine testing and chemical-kinetic modeling: compositions and properties, Energy Fuels, 30, 1445-1451, (2016) · doi:10.1021/acs.energyfuels.5b02879
[44] Muller, S. M.; Scheerer, D., A method to parallelize tridiagonal solvers, Parallel Comput., 17, 181-188, (1991) · Zbl 0729.65013 · doi:10.1016/S0167-8191(05)80104-8
[45] Okong’O, N.; Bellan, J., Direct numerical simulation of a transitional supercritical binary mixing layer: heptane and nitrogen, J. Fluid Mech., 464, 1-34, (2002) · Zbl 1062.76029
[46] Okong’O, N.; Bellan, J., Consistent large eddy simulation of a temporal mixing layer laden with evaporating drops. Part 1. Direct numerical simulation, formulation and a priori analysis, J. Fluid Mech., 499, 1-47, (2004) · Zbl 1081.76563 · doi:10.1017/S0022112003007018
[47] Okong’O, N.; Harstad, K.; Bellan, J., Direct numerical simulations of O_2/H_2 temporal mixing layers under supercritical conditions, AIAA J., 40, 5, 914-926, (2002)
[48] Oschwald, M.; Schick, A., Supercritical nitrogen free jet investigated by spontaneous Raman scattering, Exp. Fluids, 27, 497-506, (1999) · doi:10.1007/s003480050374
[49] Oschwald, M., Schik, A., Klar, M. & Mayer, W.1999 Investigation of coaxial LN2/GH2-injection at supercritical pressure by spontaneous Raman scattering. AIAA Paper 99-2887.
[50] Pantano, C.; Sarkar, S., A study of compressibility effects in the high-speed turbulent shear layer using direct simulation, J. Fluid Mech., 451, 329-371, (2002) · Zbl 1156.76403 · doi:10.1017/S0022112001006978
[51] Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P., The Properties of Gases and Liquids, (2001), McGraw-Hill
[52] Rowlinson, J. S.; Widom, B., Molecular Theory of Capillarity, (2002), Dover
[53] Roy, A.; Clement Joly, C.; Corin Segal, C., Disintegrating supercritical jets in a subcritical environment, J. Fluid Mech., 717, 193-202, (2013) · Zbl 1284.76028 · doi:10.1017/jfm.2012.566
[54] Spray A http://www.sandia.gov/ecn/cvdata/targetCondition/sprayA.php. · Zbl 0803.76096
[55] Sarman, S.; Evans, D. J., Heat flow and mass diffusion in binary Lennard-Jones mixtures, Phys. Rev. A, 45, 4, 2370-2379, (1992) · doi:10.1103/PhysRevA.45.2370
[56] Seppecher, P., Moving contact lines in the Cahn-Hilliard theory, Intl J. Engng Sci., 34, 9, 977-992, (1996) · Zbl 0899.76042 · doi:10.1016/0020-7225(95)00141-7
[57] Silke, E. J.; Pitz, W. J.; Westbrook, C. K., Detailed chemical kinetic modeling of cyclohexane oxidation, J. Phys. Chem. A, 111, 19, 3761-3775, (2007) · doi:10.1021/jp067592d
[58] Simmie, J. M., Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci., 29, 599-634, (2003) · doi:10.1016/S0360-1285(03)00060-1
[59] Taylor, R.; Krishna, R., Multicomponent Mass Transfer, (1993), John Wiley and Sons
[60] Tennekes, H.; Lumley, J. L., A First Course in Turbulence, (1989), MIT Press · Zbl 0285.76018
[61] Van Der Waals, J. D.1893Thermodynamische theorie der capillariteit in de onderstelling van continue dichtheidsverandering. Verhand. Kon. Akad. Wetensch. Amst. (Sect. 1)1 (8), 56 pages. · JFM 24.0967.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.