zbMATH — the first resource for mathematics

Large-eddy simulation of laminar transonic buffet. (English) Zbl 1415.76396
Summary: A large-eddy simulation of laminar transonic buffet on an airfoil at a Mach number \(M=0.735\), an angle of attack \(\alpha=4^\circ\), a Reynolds number \(\text{Re}_c=3\times 10^6\) has been carried out. The boundary layer is laminar up to the shock foot and laminar/turbulent transition occurs in the separation bubble at the shock foot. Contrary to the turbulent case for which wall pressure spectra are characterised by well-marked peaks at low frequencies (\(St=f\cdot c/U_\infty\simeq 0.06-0.07\), where \(St\) is the Strouhal number, \(f\) the shock oscillation frequency, \(c\) the chord length and \(U_\infty\) the free-stream velocity), in the laminar case, there are also well-marked peaks but at a much higher frequency \((St=1.2)\). The shock oscillation amplitude is also lower: 6% of chord and limited to the shock foot area in the laminar case instead of 20% with a whole shock oscillation and intermittent boundary layer separation and reattachment in the turbulent case. The analysis of the phase-averaged fields allowed linking of the frequency of the laminar transonic buffet to a separation bubble breathing phenomenon associated with a vortex shedding mechanism. These vortices are convected at \(U_c/U_\infty\simeq 0.4\) (where \(U_c\) is the convection velocity). The main finding of the present paper is that the higher frequency of the shock oscillation in the laminar regime is due to a different mechanism than in the turbulent one: laminar transonic buffet is due to a separation bubble breathing phenomenon occurring at the shock foot.

76F65 Direct numerical and large eddy simulation of turbulence
76F06 Transition to turbulence
76K05 Hypersonic flows
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics, general
Full Text: DOI
[1] Agostini, L.; Larchevêque, L.; Dupont, P.; Debiève, J. F.; Dussauge, J.-P., Zones of influence and shock motion in a shock/boundary-layer interaction, AIAA J., 50, 6, 1377-1387, (2012)
[2] Alam, M.; Sandham, N. D., Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment, J. Fluid Mech., 410, 1-28, (2000) · Zbl 0959.76035
[3] Beneddine, S.; Sipp, D.; Arnault, A.; Dandois, J.; Lesshafft, L., Conditions for validity of mean flow stability analysis, J. Fluid Mech., 798, 485-504, (2016) · Zbl 1422.76070
[4] Benoit, B. & Legrain, I.1987 Buffeting prediction for transport aircraft applications based on unsteady pressure measurement. In 5th AIAA Applied Aerodynamics Conference. AIAA Paper 87-2356.
[5] Brion, V.; Dandois, J.; Abart, J.-C.; Paillart, P., Experimental analysis of the shock dynamics on a transonic laminar airfoil, EUCASS Prog. Flight Phys., 9, 365-386, (2017)
[6] Bur, R., Brion, V. & Molton, P.2014An overview of recent experimental studies conducted in ONERA S3Ch transonic wind tunnel. In 29th Congress of the International Council of the Aeronautical Sciences, St Petersburg, Russia. ICAS.
[7] Bur, R. & Garnier, E.2016Transition effect on a shock-wave/boundary layer interaction. In ECCOMAS Congress 2016, 5-10 June 2016, Crete Island, Greece. ECCOMAS.
[8] Crouch, J. D., Garbaruk, A., Magidov, D. & Jacquin, L.2009aGlobal structure of buffeting flow on transonic airfoils. In IUTAM Symposium on Unsteady Separated Flows and their Control, IUTAM Bookseries (ed. Braza, M. & Hourigan, K.), vol. 14, pp. 297-306. Springer. doi:10.1007/978-1-4020-9898-7_25
[9] Crouch, J. D.; Garbaruk, A.; Magidov, D.; Travin, A., Origin and structure of transonic buffet on airfoils, J. Fluid Mech., 628, 357-369, (2009) · Zbl 1181.76092
[10] Dandois, J.; Garnier, E.; Sagaut, P., Numerical simulation of active separation control by a synthetic jet, J. Fluid Mech., 574, 25-58, (2007) · Zbl 1133.76324
[11] Davidson, T. S. & Babinsky, H.2016 Influence of transition on the flow downstream of normal shock wave-boundary layer interactions. In 54th AIAA Aerospace Sciences Meeting. AIAA Paper 2016-0044.
[12] Dor, J. B., Mignosi, A., Seraudie, A. & Benoit, B.1989Wind tunnel studies of natural shock wave separation instabilities for transonic airfoil tests. In Symposium Transsonicum III, pp. 417-427. Springer. doi:10.1007/978-3-642-83584-1_34
[13] Dupont, P.; Haddad, C.; Debiève, J. F., Space and time organization in a shock induced boundary layer, J. Fluid Mech., 559, 255-277, (2006) · Zbl 1151.76565
[14] Dussauge, J.-P.; Dupont, P.; Debiève, J.-F., Unsteadiness in shock wave boundary layer interactions with separation, Aerosol Sci. Technol., 10, 85-91, (2006)
[15] Edwards, J. R.; Liou, M. S., Low-diffusion flux-splitting methods for flows at all speeds, AIAA J., 36, 1610-1617, (1998)
[16] Ganapathisubramani, B.; Clemens, N. T.; Dolling, D. S., Effects of upstream boundary layer on the unsteadiness of shock-induced separation, J. Fluid Mech., 585, 369-394, (2007) · Zbl 1118.76007
[17] Hammond, D. A.; Redekopp, L. G., Local and global instability properties of separation bubbles, Eur. J. Mech. (B/Fluids), 17, 317-328, (1998) · Zbl 0922.76158
[18] Huerre, P. & Rossi, M.1991Stability of velocity profiles with reverse flow. In Instability, ICASE-Workshop, Berlin (ed. Hussaini, M. Y., Kumar, A. & Streett, C. L.). Springer.
[19] Huerre, P. & Rossi, M.1998Hydrodynamic instabilities in open flows. In Hydrodynamics and Nonlinear Instabilities (ed. Godrèche, C. & Manneville, P.). Cambridge University Press. · Zbl 0904.76021
[20] Jacquin, L.; Molton, P.; Deck, S.; Maury, B.; Soulevant, D., Experimental study of shock oscillation over a transonic supercritical profile, AIAA J., 47, 9, 1985-1994, (2009)
[21] Kouchi, T.; Yamaguchi, S.; Koike, S.; Nakajima, T.; Sato, M.; Kanda, H.; Yanase, S., Wavelet analysis of transonic buffet on a twodimensional airfoil with vortex generators, Exp. Fluids, 57, 166, (2016)
[22] Larchevêque, L.2016 Low- and medium- frequency unsteadinesses in a transitional shock – boundary reflection with separation. In 54th AIAA Aerospace Sciences Meeting. AIAA Paper 2016-1833.
[23] Laurent, C.; Mary, I.; Gleize, V.; Lerat, A.; Arnal, D., DNS database of a transitional separation bubble on a flat plate and application to rans modeling validation, Comput. Fluids, 61, 21-30, (2012) · Zbl 1365.76089
[24] Lee, B. H. K., Oscillatory shock motion caused by transonic shock boundary-layer interaction, AIAA J., 28, 5, 942-945, (1990)
[25] Lee, B. H. K., Self-sustained shock oscillations on airfoils at transonic speeds, Prog. Aerosp. Sci., 37, 2, 147-196, (2001)
[26] Lee, B. H. K. & Tang, F. C.1988 An experimental study of transonic buffet of a supercritical airfoil with trailing edge flap. National Research Council of Canada, AN-54. NRC.
[27] Mary, I.; Sagaut, P., LES of a flow around an airfoil near stall, AIAA J., 40, 1139-1145, (2002)
[28] Marquillie, M.; Ehrenstein, U., On the onset of nonlinear oscillations in a separating boundary-layer flow, J. Fluid Mech., 490, 169-188, (2003) · Zbl 1063.76537
[29] Mcdevitt, J. B. & Okuno, A. F.1985 Static and dynamic pressure measurements on a NACA 0012 airfoil in the ames high Reynolds number facility. NASA TP-2485.
[30] Memmolo, A., Bernardini, M. & Pirozzoli, S.2016Scrutiny of buffet mechanisms in transonic flow. In 51st 3AF International Conference on Applied Aerodynamics, Strasbourg, France. 3AF.
[31] Owen, P. R. & Klanfer, L.1953On the laminar boundary layer separation from the leading edge of a thin aerofoil. In ARC Conf. Proc. 220. ARC.
[32] Pearcey, H. H.1958 A method for the prediction of the onset of buffeting and other separation effects fromwind tunnel tests on rigid models. AGARD TR-223. AGARD.
[33] Péchier, M.; Guillen, P.; Gayzac, R., Magnus effect over finned projectiles, J. Spacecr. Rockets, 38, 542-549, (2001)
[34] Rist, U.2004Instability and transition mechanisms in laminar separation bubbles. In RTO-AVT-VKI Lecture Series. Von Karman Institute.
[35] Sansica, A.; Sandham, N. D.; Hu, Z., Forced response of a laminar shock-induced separation bubble, Phys. Fluids, 26, (2014)
[36] Sansica, A.; Sandham, N. D.; Hu, Z., Instability and low-frequency unsteadiness in a shock-induced laminar separation bubble, J. Fluid Mech., 798, 5-26, (2016)
[37] Sartor, F.; Mettot, C.; Sipp, D., Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile, AIAA J., 53, 7, 1980-1993, (2014)
[38] Touber, E.; Sandham, N. D., Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interaction, J. Fluid Mech., 671, 417-465, (2011) · Zbl 1225.76184
[39] Vreman, A. W.1995 Direct and large eddy simulation of the compressible turbulent mixing layer. PhD thesis, University of Twente.
[40] Wu, M.; Martin, M. P., Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data, J. Fluid Mech., 594, 71-83, (2008) · Zbl 1159.76345
[41] Yang, Z.; Voke, P. R., Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature, J. Fluid Mech., 439, 305-333, (2001) · Zbl 1020.76023
[42] Zhao, Z., Ren, X., Gao, C., Xiong, J., Liu, F. & Luo, S.2013 Experimental study of shock wave oscillation on SC(2)-0714 airfoil. In 51st AIAA Aerospace Sciences Meeting. AIAA 2013-0537.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.