zbMATH — the first resource for mathematics

A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. (English) Zbl 1415.76461
Summary: This work focuses on the accuracy and stability of high-order nodal discontinuous Galerkin (DG) methods for under-resolved turbulence computations. In particular, we consider the inviscid Taylor-Green vortex (TGV) flow to analyse the implicit large eddy simulation (iLES) capabilities of DG methods at very high Reynolds numbers. The governing equations are discretised in two ways in order to suppress aliasing errors introduced into the discrete variational forms due to the under-integration of non-linear terms. The first, more straightforward way relies on consistent/over-integration, where quadrature accuracy is improved by using a larger number of integration points, consistent with the degree of the non-linearities. The second strategy, originally applied in the high-order finite difference community, relies on a split (or skew-symmetric) form of the governing equations. Different split forms are available depending on how the variables in the non-linear terms are grouped. The desired split form is then built by averaging conservative and non-conservative forms of the governing equations, although conservativity of the DG scheme is fully preserved. A preliminary analysis based on Burgers’ turbulence in one spatial dimension is conducted and shows the potential of split forms in keeping the energy of higher-order polynomial modes close to the expected levels. This indicates that the favourable dealiasing properties observed from split-form approaches in more classical schemes seem to hold for DG. The remainder of the study considers a comprehensive set of (under-resolved) computations of the inviscid TGV flow and compares the accuracy and robustness of consistent/over-integration and split form discretisations based on the local Lax-Friedrichs and Roe-type Riemann solvers. Recent works showed that relevant split forms can stabilize higher-order inviscid TGV test cases otherwise unstable even with consistent integration. Here we show that stable high-order cases achievable with both strategies have comparable accuracy, further supporting the good dealiasing properties of split form DG. The higher-order cases achieved only with split form schemes also displayed all the main features expected from consistent/over-integration. Among test cases with the same number of degrees of freedom, best solution quality is obtained with Roe-type fluxes at moderately high orders (around sixth order). Solutions obtained with very high polynomial orders displayed spurious features attributed to a sharper dissipation in wavenumber space. Accuracy differences between the two dealiasing strategies considered were, however, observed for the low-order cases, which also yielded reduced solution quality compared to high-order results.

76M10 Finite element methods applied to problems in fluid mechanics
76M22 Spectral methods applied to problems in fluid mechanics
76B47 Vortex flows for incompressible inviscid fluids
Full Text: DOI
[1] Abbà, A.; Bonaventura, L.; Nini, M.; Restelli, M., Dynamic models for large eddy simulation of compressible flows with a high order DG method, Comput. Fluids, 122, 209-222, (2015) · Zbl 1390.76122
[2] Banerjee, D.; Ray, S. S., Transition from dissipative to conservative dynamics in equations of hydrodynamics, Phys. Rev. E, 90, 4, (2014)
[3] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F.; Munz, C. D., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int. J. Numer. Methods Fluids, 76, 8, 522-548, (2014)
[4] Beck, A. D.; Flad, D. G.; Tonhäuser, C.; Gassner, G.; Munz, C.-D., On the influence of polynomial de-aliasing on subgrid scale models, Flow Turbul. Combust., 97, 2, 475-511, (2016)
[5] Blaisdell, G. A.; Spyropoulos, E. T.; Qin, J. H., The effect of the formulation of nonlinear terms on aliasing errors in spectral methods, Appl. Numer. Math., 21, 3, 207-219, (1996) · Zbl 0858.76060
[6] Brachet, M. E., Direct simulation of three-dimensional turbulence in the Taylor-Green vortex, Fluid Dyn. Res., 8, 1, 1-8, (1991)
[7] Brachet, M. E.; Meneguzzi, M.; Vincent, A.; Politano, H.; Sulem, P. L., Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows, Phys. Fluids A, Fluid Dynam. (1989-1993), 4, 12, 2845-2854, (1992) · Zbl 0775.76026
[8] Cantwell, C. D.; Moxey, D.; Comerford, A.; Bolis, A.; Rocco, G.; Mengaldo, G.; De Grazia, D.; Yakovlev, S.; Lombard, J.; Ekelschot, D.; Jordi, B.; Xu, H.; Mohamied, Y.; Eskilsson, C.; Nelson, B.; Vos, P.; Biotto, C.; Kirby, R. M.; Sherwin, S. J., Nektar++: an open-source spectral/hp element framework, Comput. Phys. Commun., 192, 205-219, (2015) · Zbl 1380.65465
[9] Carpenter, M.; Fisher, T.; Nielsen, E.; Frankel, S., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867, (2014) · Zbl 1457.65140
[10] Carpenter, M.; Kennedy, C., Fourth-order 2N-storage Runge-Kutta schemes, (1994), Tech. Rep. NASA TM 109111
[11] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 5, 1252-1286, (2013) · Zbl 1373.76121
[12] Chapelier, J.-B.; de la Llave Plata, M.; Lamballais, E., Development of a multiscale LES model in the context of a modal discontinuous Galerkin method, Comput. Methods Appl. Mech. Eng., 307, 275-299, (2016)
[13] Chong, M. S.; Perry, A. E.; Cantwell, B. J., A general classification of three-dimensional flow fields, Phys. Fluids A, Fluid Dynam. (1989-1993), 2, 5, 765-777, (1990)
[14] Cichowlas, C.; Bonaïti, P.; Debbasch, F.; Brachet, M., Effective dissipation and turbulence in spectrally truncated Euler flows, Phys. Rev. Lett., 95, 26, (2005)
[15] Cichowlas, C.; Brachet, M.-E., Evolution of complex singularities in kida-pelz and Taylor-Green inviscid flows, Fluid Dyn. Res., 36, 4, 239-248, (2005) · Zbl 1153.76393
[16] Collis, S. S., The DG/VMS method for unified turbulence simulation, (Proceedings of the 32nd AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper 2002-3124, (2002))
[17] De Grazia, D.; Mengaldo, G.; Moxey, D.; Vincent, P.; Sherwin, S., Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes, Int. J. Numer. Methods Fluids, 75, 12, 860-877, (2014)
[18] Diosady, L.; Murman, S., Higher-order methods for compressible turbulent flows using entropy variables, (Proceedings of the 53rd AIAA Aerospace Sciences Meeting, AIAA 2015-0294, (2015))
[19] Drikakis, D.; Fureby, C.; Grinstein, F. F.; Youngs, D., Simulation of transition and turbulence decay in the Taylor-Green vortex, J. Turbul., 8, 20, (2007) · Zbl 1273.76191
[20] Ducros, F.; Laporte, F.; Soulères, T.; Guinot, V.; Moinat, P.; Caruelle, B., High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows, J. Comput. Phys., 161, 114-139, (2000) · Zbl 0972.76066
[21] Fernandez, P.; Moura, R.; Mengaldo, G.; Peraire, J., Non-modal analysis of spectral element methods: towards accurate and robust large-eddy simulations, (2018), preprint
[22] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557, (2013) · Zbl 1349.65293
[23] Fisher, T. C.; Carpenter, M. H.; Nordström, J.; Yamaleev, N. K.; Swanson, C., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 353-375, (2013) · Zbl 1284.65102
[24] Flad, D.; Beck, A.; Munz, C.-D., Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method, J. Comput. Phys., 313, 1-12, (2016) · Zbl 1349.76118
[25] Frisch, U., Turbulence: the legacy of A.N. Kolmogorov, (1995), Cambridge University Press
[26] Frisch, U.; Kurien, S.; Pandit, R.; Pauls, W.; Ray, S. S.; Wirth, A.; Zhu, J. Z., Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence, Phys. Rev. Lett., 101, 14, (2008)
[27] Gassner, G.; Hindenlang, F.; Munz, C., A Runge-Kutta based discontinuous Galerkin method with time accurate local time stepping, Adaptive High-Order Methods in Computational Fluid Dynamics, 2, 95-118, (2011) · Zbl 1358.76040
[28] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253, (2013) · Zbl 1275.65065
[29] Gassner, G. J., A kinetic energy preserving nodal discontinuous Galerkin spectral element method, Int. J. Numer. Methods Fluids, 76, 1, 28-50, (2014)
[30] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn., 27, 3, 221-237, (2012)
[31] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations, Appl. Math. Comput., 272, 2, 291-308, (2015)
[32] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66, (2016) · Zbl 1422.65280
[33] Gibbon, J. D., The three-dimensional Euler equations: where do we stand?, Phys. D: Nonlinear Phenom., 237, 14, 1894-1904, (2008) · Zbl 1143.76389
[34] Grinstein, F. F.; Margolin, L. G.; Rider, W. J., Implicit large eddy simulation: computing turbulent fluid dynamics, (2007), Cambridge University Press · Zbl 1135.76001
[35] Hesthaven, J.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, (2007), Springer Science & Business Media
[36] Hindenlang, F.; Gassner, G.; Altmann, C.; Beck, A.; Staudenmaier, M.; Munz, C.-D., Explicit discontinuous Galerkin methods for unsteady problems, Comput. Fluids, 61, 86-93, (2012) · Zbl 1365.76117
[37] Hou, T. Y.; Li, R., Blowup or no blowup? the interplay between theory and numerics, Phys. D: Nonlinear Phenom., 237, 14, 1937-1944, (2008) · Zbl 1143.76390
[38] Hughes, T. J.; Feijóo, G. R.; Mazzei, L.; Quincy, J.-B., The variational multiscale method-a paradigm for computational mechanics, Comput. Methods Appl. Mech. Eng., 166, 1, 3-24, (1998) · Zbl 1017.65525
[39] Hughes, T. J.; Mazzei, L.; Jansen, K. E., Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3, 1-2, 47-59, (2000) · Zbl 0998.76040
[40] Huynh, H. T., A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, (18th AIAA Computational Fluid Dynamics Conference, AIAA 2007-4079, (2007))
[41] Jameson, A., Formulation of kinetic energy preserving conservative schemes for gas dynamics and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube using entropy and kinetic energy preserving schemes, J. Sci. Comput., 34, 3, 188-208, (2008) · Zbl 1133.76031
[42] Karamanos, G.; Karniadakis, G., A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., 163, 1, 22-50, (2000) · Zbl 0984.76036
[43] Karniadakis, G. E.; Sherwin, S., Spectral/hp element methods for computational fluid dynamics, (2005), Oxford University Press USA · Zbl 1116.76002
[44] Kennedy, C. A.; Gruber, A., Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid, J. Comput. Phys., 227, 1676-1700, (2008) · Zbl 1290.76135
[45] Kirby, R.; Karniadakis, G., De-aliasing on non-uniform grids: algorithms and applications, J. Comput. Phys., 191, 249-264, (2003) · Zbl 1161.76534
[46] Kirby, R. M.; Karniadakis, G. E., Coarse resolution turbulence simulations with spectral vanishing vicosity-large-eddy simulations (SVV-LES), J. Fluids Eng., 124, 4, 886-891, (2002)
[47] Kirby, R. M.; Sherwin, S. J., Stabilisation of spectral/hp element methods through spectral vanishing viscosity: application to fluid mechanics modelling, Comput. Methods Appl. Mech. Eng., 195, 23, 3128-3144, (2006) · Zbl 1115.76060
[48] Koal, K.; Stiller, J.; Blackburn, H., Adapting the spectral vanishing viscosity method for large-eddy simulations in cylindrical configurations, J. Comput. Phys., 231, 8, 3389-3405, (2012) · Zbl 1402.76061
[49] Kopriva, D. A., Implementing spectral methods for partial differential equations. scientific computation, (May 2009), Springer
[50] Kopriva, D. A., Stability of overintegration methods for nodal discontinuous Galerkin spectral element methods, J. Sci. Comput., (2017)
[51] Kopriva, D. A.; Gassner, G. J., On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods, J. Sci. Comput., 44, 2, 136-155, (2010-08-01)
[52] Kravchenko, A.; Moin, P., On the effect of numerical errors in large eddy simulations of turbulent flows, J. Comput. Phys., 131, 2, 310-322, (1997) · Zbl 0872.76074
[53] Laizet, S.; Nedić, J.; Vassilicos, C., Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid, Int. J. Comput. Fluid Dyn., 29, 3-5, 286-302, (2015)
[54] Larsson, J., Effect of numerical dissipation on the predicted spectra for compressible turbulence, Annu. Res. Briefs, 47-57, (2007)
[55] Liu, Y.; Vinokur, M.; Wang, Z., Spectral difference method for unstructured grids i: basic formulation, J. Comput. Phys., 216, 2, 780-801, (2006) · Zbl 1097.65089
[56] Lombard, J.-E. W.; Moxey, D.; Sherwin, S. J.; Hoessler, J. F.; Dhandapani, S.; Taylor, M. J., Implicit large-eddy simulation of a wingtip vortex, AIAA J., 54, 2, 506-518, (2015)
[57] Manzanero, J.; Rubio, G.; Ferrer, E.; Valero, E.; Kopriva, D. A., Insights on aliasing driven instabilities for advection equations with application to Gauss-lobatto discontinuous Galerkin methods, J. Sci. Comput., 1-20, (2017)
[58] Mengaldo, G., Discontinuous spectral/hp element methods: development, analysis and applications to compressible flows, (2015), Imperial College London, Ph.D. thesis
[59] Mengaldo, G.; De Grazia, D.; Moura, R. C.; Sherwin, S. J., Spatial eigensolution analysis of energy-stable flux reconstruction schemes and influence of the numerical flux on accuracy and robustness, J. Comput. Phys., 358, 1-20, (2018) · Zbl 1381.76129
[60] Mengaldo, G.; De Grazia, D.; Moxey, D.; Vincent, P.; Sherwin, S., Dealiasing techniques for high-order spectral element methods on regular and irregular grids, J. Comput. Phys., 299, 56-81, (2015) · Zbl 1352.65396
[61] Mengaldo, G.; De Grazia, D.; Vincent, P.; Sherwin, S., On the connections between discontinuous Galerkin and flux reconstruction schemes: extension to curvilinear meshes, J. Sci. Comput., 67, 3, 1272-1292, (2016) · Zbl 1342.65196
[62] Mengaldo, G.; Moura, R.; Giralda, B.; Peiró, J.; Sherwin, S., Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES, Comput. Fluids, (2017) · Zbl 1410.76103
[63] Minguez, M.; Pasquetti, R.; Serre, E., High-order large-eddy simulation of flow over the “ahmed body” car model, Phys. Fluids 1994-present, 20, 9, (2008) · Zbl 1182.76519
[64] Morinishi, Y., Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows, J. Comput. Phys., 229, 2, 276-300, (2010) · Zbl 1375.76113
[65] Moura, R.; Mengaldo, G.; Peiró, J.; Sherwin, S., An LES setting for DG-based implicit LES with insights on dissipation and robustness, (Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, (2017)), 161-173 · Zbl 1388.76101
[66] Moura, R.; Sherwin, S.; Peiró, J., Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: insights into spectral vanishing viscosity, J. Comput. Phys., 307, 401-422, (2016) · Zbl 1352.65362
[67] Moura, R. C.; Mengaldo, G.; Peiró, J.; Sherwin, S. J., On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence, J. Comput. Phys., 330, 615-623, (2017) · Zbl 1378.76036
[68] Moura, R. C.; Sherwin, S. J.; Peiró, J., Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods, J. Comput. Phys., 298, 695-710, (2015) · Zbl 1349.76131
[69] Munts, E. A.; Hulshoff, S. J.; de Borst, R., A modal-based multiscale method for large eddy simulation, J. Comput. Phys., 224, 1, 389-402, (2007) · Zbl 1120.76031
[70] Parsani, M.; Ghorbaniasl, G.; Lacor, C.; Turkel, E., An implicit high-order spectral difference approach for large eddy simulation, J. Comput. Phys., 229, 14, 5373-5393, (2010) · Zbl 1346.76112
[71] Pasquetti, R., Spectral vanishing viscosity method for LES: sensitivity to the SVV control parameters, J. Turbul., 6, 12, (2005)
[72] Pirozzoli, S., Numerical methods for high-speed flows, Annu. Rev. Fluid Mech., 43, 163-194, (2011) · Zbl 1299.76103
[73] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 135, 2, 250-258, (1997) · Zbl 0890.65094
[74] Serson, D.; Meneghini, J. R.; Sherwin, S. J., Direct numerical simulations of the flow around wings with spanwise waviness, J. Fluid Mech., 826, 714-731, (2017) · Zbl 1390.76658
[75] Shu, C. W.; Don, W. S.; Gottlieb, D.; Schilling, O.; Jameson, L., Numerical convergence study of nearly incompressible, inviscid Taylor-Green vortex flow, J. Sci. Comput., 24, 1, 1-27, (2005) · Zbl 1161.76535
[76] Sjögreen, B.; Yee, H. C., On skew-symmetric splitting and entropy conservation schemes for the Euler equations, (Numerical Mathematics and Advanced Applications 2009, (2010), Springer), 817-827 · Zbl 1431.35117
[77] Slotnick, J.; Khodadoust, A.; Alonso, J.; Darmofal, D.; Gropp, W.; Lurie, E.; Mavriplis, D., CFD vision 2030 study: A path to revolutionary computational aerosciences, (2014), Tech. rep., NASA CR 2014-218178
[78] Taylor, G. I.; Green, A. E., Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. A, 158, 895, 499-521, (1937) · JFM 63.1358.03
[79] Toro, E., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer
[80] Trefethen, L. N., Approximation theory and approximation practice, (2013), SIAM · Zbl 1264.41001
[81] Tsinober, A., An informal conceptual introduction to turbulence, vol. 483, (2009), Springer
[82] Uranga, A.; Persson, P. O.; Drela, M.; Peraire, J., Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method, Int. J. Numer. Methods Eng., 87, 1-5, 232-261, (2011) · Zbl 1242.76085
[83] Van den Abeele, K.; Broeckhoven, T.; Lacor, C., Dispersion and dissipation properties of the 1D spectral volume method and application to a p-multigrid algorithm, J. Comput. Phys., 224, 2, 616-636, (2007) · Zbl 1120.65330
[84] Van den Abeele, K.; Lacor, C.; Wang, Z. J., On the stability and accuracy of the spectral difference method, J. Sci. Comput., 37, 2, 162-188, (2008) · Zbl 1203.65132
[85] Vermeire, B. C.; Nadarajah, S.; Tucker, P. G., Implicit large eddy simulation using the high-order correction procedure via reconstruction scheme, Int. J. Numer. Methods Fluids, 82, 231-260, (2016)
[86] Viellefosse, P., Internal motion of a small element of fluid in an inviscid flow, Phys. A, Stat. Mech. Appl., 125, 1, 150-162, (1984) · Zbl 0599.76040
[87] Vincent, P. E.; Castonguay, P.; Jameson, A., Insights from von Neumann analysis of high-order flux reconstruction schemes, J. Comput. Phys., 230, 22, 8134-8154, (2011) · Zbl 1343.65117
[88] Wang, Z. J., Spectral (finite) volume method for conservation laws on unstructured grids. basic formulation: basic formulation, J. Comput. Phys., 178, 1, 210-251, (2002) · Zbl 0997.65115
[89] Wasberg, C. E.; Gjesdal, T.; Reif, B. A.P.; Andreassen, Ø., Variational multiscale turbulence modelling in a high order spectral element method, J. Comput. Phys., 228, 19, 7333-7356, (2009) · Zbl 1172.76021
[90] Wiart, C. C.; Hillewaert, K.; Bricteux, L.; Winckelmans, G., Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method, Int. J. Numer. Methods Fluids, 78, 6, 335-354, (2015)
[91] Zang, T. A., On the rotation and skew-symmetric forms for incompressible flow simulations, Appl. Numer. Math., 7, 1, 27-40, (1991) · Zbl 0708.76071
[92] Zikanov, O.; Thess, A.; Grauer, R., Statistics of turbulence in a generalized random-force-driven Burgers equation, Phys. Fluids, 9, 5, 1362-1367, (1997) · Zbl 1185.76792
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.