zbMATH — the first resource for mathematics

Trailing-edge flow and noise control using porous treatments. (English) Zbl 1415.76618
Summary: This paper is concerned with the application of porous treatments as a means of flow and aerodynamic noise reduction. An extensive experimental investigation is undertaken to study the effects of flow interaction with porous media, in particular in the context of the manipulation of flow over blunt trailing edges and attenuation of vortex shedding. Comprehensive boundary layer and wake measurements have been carried out for a long flat plate with solid and porous blunt trailing edges. Unsteady velocity and surface pressure measurements have also been performed to gain an in-depth understanding of the changes to the energy-frequency content and coherence of the boundary layer and wake structures as a result of the flow interaction with a porous treatment. Results have shown that permeable treatments can effectively delay the vortex shedding and stabilize the flow over the blunt edge via mechanisms involving flow penetration into the porous medium and discharge into the near-wake region. It has also been shown that the porous treatment can effectively destroy the spanwise coherence of the boundary layer structures and suppress the velocity and pressure coherence, particularly at the vortex shedding frequency. The flow-porous scrubbing and its effects on the near-wall and large coherent structures have also been studied. The emergence of a quasi-periodic recirculating flow field inside highly permeable surface treatments has also been investigated. Finally, the paper has identified several important mechanisms concerning the application of porous treatments for aerodynamic and aeroacoustic purposes, which can help more effective and tailored designs for specific applications.

76S05 Flows in porous media; filtration; seepage
PDF BibTeX Cite
Full Text: DOI
[1] Abernathy, F. H.1970 Fundamentals of boundary layers. Encyclopaedia Britannica Educational Corporation, National Commitee for Fluid Mechanics Films. Film notes, pp. 1-7.
[2] Afshari, A., Azarpeyvand, M., Dehghan, A. A. & Szoke, M.2016Trailing edge noise reduction using novel surface treatments. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France. AIAA 2016-2384.
[3] Allard, J.; Atalla, N., Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, (2009), Wiley
[4] Allard, J. F.; Champoux, Y., New empirical equations for sound propagation in rigid frame fibrous materials, J. Acoust. Soc. Am., 91, 6, 3346-3353, (1992)
[5] Angland, D.; Zhang, X.; Molin, N., Measurements of flow around a flap side edge with porous edge treatment, AIAA J., 47, 7, 1660-1671, (2009)
[6] Bae, Y., Jeong, Y. E. & Moon, Y. J.2009Effect of porous surface on the flat plate self-noise. In Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference, Miami, Florida. AIAA 2009-3311.
[7] Bearman, P. W.; Tombazis, N., The effects of three-dimensional imposed disturbances on bluff body near wake flows, J. Wind Engng Ind. Aerodyn., 49, 1-3, 339-349, (1993)
[8] Berg, S., Cense, A. W., Hofman, J. P. & Smits, R. M. M.2007 Flow in porous media with slip boundary condition. In Society of Core Analysts, Calgary, Canada. SCA-2007-13.
[9] Bevilaqua, P. M.1975 Intermittency, the entrainment problem. ARL Tech. Rep. 75-0095. Aerospace Research Labs.
[10] Bhattacharyya, S.; Dhinakaran, S.; Khalili, A., Fluid motion around and through a porous cylinder, Chem. Engng Sci., 61, 13, 4451-4461, (2006)
[11] Bhattacharyya, S.; Singh, A. K., Reduction in drag and vortex shedding frequency through porous sheath around a circular cylinder, Intl J. Numer. Meth. Fluids, 65, 6, 683-698, (2011) · Zbl 1428.76197
[12] Blake, W. K., Mechanics of Flow-Induced Sound and Vibration V2: Complex Flow-Structure Interactions, (2012), Elsevier
[13] Brooks, T. F., Pope, D. S. & Marcolini, M. A.1989 Airfoil self-noise and prediction. NASA Reference Publication 1218.
[14] Bruneau, C. H.; Creuse, E.; Depeyras, D.; Gillieron, P.; Mortazavi, I., Active and passive flow control around simplified ground vehicles, J. Appl. Fluid Mech., 5, 1, 89-93, (2012)
[15] Bruneau, C. H.; Mortazavi, I., Numerical modelling and passive flow control using porous media, J. Comput. Fluids, 37, 5, 488-498, (2008) · Zbl 1237.76189
[16] Bruneau, C. H., Mortazavi, I. & Gilliéron, P.2008Flow regularisation and drag reduction around blunt bodies using porous devices. In IUTAM Symposium on Flow Control and MEMS, Springer.
[17] Bushnell, D. M.; Hefner, J. N., Viscous drag reduction in boundary layers, (1990), American Institute of Aeronautics and Astronautics
[18] Cancelliere, A.; Chang, C.; Foti, E.; Rothman, D. H.; Succi, S., The permeability of a random medium: comparison of simulation with theory, Phys. Fluids A, 2, 12, 2085-2088, (1990)
[19] 2017 Design tools surface finish. LJ Star Incorporated. Available at http://www.ljstar.com/product-lines.
[20] Chen, F.; Chen, C. F., Convection in superposed fluid and porous layers, J. Fluid Mech., 234, 97-119, (1992) · Zbl 0850.76217
[21] Choudhari, M. & Khorrami, M. R.2003Computational study of porous treatment for altering flap side-edge flow field. In Proceedings of the 9th AIAA/CEAS Aeroacoustic Conference and Exhibit. Hilton Head, South Carolina. AIAA 2003-3113.
[22] Clark, I., Devenport, W. J., Jaworski, J., Daly, C., Peake, N. & Glegg, S. A.2014The noise generating and suppressing characteristics of bio-inspired rough surfaces. In Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA. AIAA 2014-2911.
[23] Corcos, G. M., Resolution of pressure in turbulence, J. Acoust. Soc. Am., 35, 2, 192-199, (1963)
[24] 2013 Dantec Dynamics StreamWare Pro Installation and User Guide, vol. 5.10. Dantec Dynamics A/S.
[25] Dupuit, J. E. J., Etudes theoriques et pratiques sur le mouvement des eaux dans les canaux de couverts etatravers les terrains permeables, (1863), Dunod
[26] Durlofsky, L.; Brady, J. F., Analysis of the Brinkman equation as a model for flow in porous media, Phys. Fluids, 30, 11, 3329-3341, (1987) · Zbl 0636.76098
[27] Eiffel, G., Sur la résistance des spheres dans l’air en mouvement, Comptes Rendus, 155, 1597-1599, (1912) · JFM 43.0869.01
[28] Feng, P.; Xiaoling, W.; Yan, S., Investigation on the sound absorbing characteristics of porous metal plates at high sound pressure levers, Acta Acoust., 34, 3, 266-274, (2009)
[29] Fink, M. R. & Bailey, D. A.1980 Airframe noise reduction studies and clean-airframe noise investigation. NASA Contractor Report 159311.
[30] Garcia-Sagrado, A.; Hynes, T., Wall pressure sources near an airfoil trailing edge under turbulent boundary layers, J. Fluids Struct., 30, 3-34, (2012)
[31] Geyer, T. & Sarradj, E.2014Trailing edge noise of partially porous airfoils. In Proceedings of the 20th AIAA/CEAS Aeroacoustic Conference and Exhibit. Atlanta, GA. AIAA 2014-3039.
[32] Geyer, T.; Sarradj, E.; Fritzsche, C., Measurement of the noise generation at the trailing edge of porous airfoils, Exp. Fluids, 48, 2, 291-308, (2010)
[33] Geyer, T.; Sarradj, E.; Fritzsche, C., Porous airfoils: noise reduction and boundary layer effects, Intl J. Aeroacoust., 9, 6, 787-820, (2010)
[34] Goody, M., Empirical spectral model of surface pressure fluctuations, AIAA J., 42, 9, 1788-1794, (2004)
[35] Gravante, S. P.; Naguib, A. M.; Wark, C. E.; Nagib, H. M., Characterization of the pressure fluctuations under a fully developed turbulent boundary layer, AIAA J., 36, 10, 1808-1816, (1998)
[36] Gruber, M.2012 Airfoil noise reduction by edge treatments. PhD thesis, University of Southampton.
[37] Herr, M.2007A noise reduction study on flow-permeable trailing-edges. In Proceedings of the 8th ONERA-DLR Aerospace Symposium (ODAS) Conference, Gottingen, Germany.
[38] Hsu, C. T.; Cheng, P., Thermal dispersion in a porous medium, Intl J. Heat Mass Transfer, 33, 8, 1587-1597, (1990) · Zbl 0703.76079
[39] Jaworski, J. W.; Peake, N., Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls, J. Fluid Mech., 723, 456-479, (2013) · Zbl 1287.76201
[40] Jonathon, P. B. & Dam, C. P.2008Drag reduction of blunt trailing-edge airfoils. In International Colloquium on Bluff Bodies, Aerodynamics & Applications, Milano, Italy.
[41] Khorrami, M. R. & Choudhari, M. M.2003 Application of passive porous treatment to slat trailing edge noise. NASA Tech. Rep. 212416.
[42] Kladias, N.; Prasad, V., Experimental verification of Darcy-Brinkman-Forchheimer flow model for natural convection in porous media, J. Thermophys. Heat Transfer, 5, 4, 560-576, (1991)
[43] Koh, S. R., Meinke, M., Schröder, W., Zhou, B. & Gauger, N. R.2014Noise sources of trailing-edge turbulence controlled by porous media. In Proceedings of the 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA. AIAA 2014-3038.
[44] Koha, S. R., Meinkea, M., Schrödera, W., Zhou, B. & Gauger, N. R.2017Impact of permeable surface on trailing-edge noise at varying lift. In Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference, Denver, Colorado. AIAA 2017-3497.
[45] Kohring, G. A., Calculation of the permeability of porous media using hydrodynamic cellular automata, J. Stat. Phys., 63, 1-2, 411-418, (1991)
[46] Larson, R. E.; Higdon, J. J. L., Microscopic flow near the surface of two-dimensional porous media. Part 1. Axial flow, J. Fluid Mech., 166, 449-472, (1986) · Zbl 0596.76098
[47] Larson, R. E.; Higdon, J. J. L., Microscopic flow near the surface of two-dimensional porous media. Part 2. Transverse flow, J. Fluid Mech., 178, 119-136, (1987) · Zbl 0633.76097
[48] Liu, H.; Azarpeyvand, M.; Wei, J.; Qu, Z., Tandem cylinder aerodynamic sound control using porous coating, J. Sound Vib., 334, 190-201, (2015)
[49] Liu, H.; Wei, J.; Qu, Z., Prediction of aerodynamic noise reduction by using open-cell metal foam, J. Sound Vib., 331, 7, 1483-1497, (2012)
[50] Liu, H.; Wei, J.; Qu, Z., The interaction of porous material coating with the near wake of bluff body, J. Fluids Engng, 136, 2, (2014)
[51] Lumley, J. L., Computational modeling of turbulent flows, Adv. Appl. Mech., 18, 123-176, (1979) · Zbl 0472.76052
[52] Lyu, B.; Azarpeyvand, M., On the noise prediction for serrated leading edges, J. Fluid Mech., 826, 205-234, (2017)
[53] Lyu, B.; Azarpeyvand, M.; Sinayoko, S., Prediction of noise from serrated trailing edges, J. Fluid Mech., 793, 556-588, (2016) · Zbl 1382.76223
[54] Meegoda, N. J.; King, I. P.; Arulanandan, K., An expression for the permeability of anisotropic granular media, Intl J. Numer. Anal. Meth. Geomech., 13, 6, 575-598, (1989) · Zbl 0692.73071
[55] Mimeau, C.; Mortazavi, I.; Cottet, G.-H., Passive control of the flow around a hemisphere using porous media, Eur. J. Mech. (B/Fluids), 65, 213-226, (2017) · Zbl 1408.76506
[56] Naghib-Lahouti, A.; Hangan, H.; Lavoie, P., Distributed forcing flow control in the wake of a blunt trailing edge profiled body using plasma actuators, Phys. Fluids, 27, 3, (2015)
[57] Naito, H.; Fukagata, K., Numerical simulation of flow around a circular cylinder having porous surface, Phys. Fluids, 24, 11, (2012)
[58] Oyewola, O.; Djenidi, L.; Antonia, R. A., Influence of localised wall suction on the anisotropy of the Reynolds stress tensor in a turbulent boundary layer, Exp. Fluids, 37, 2, 187-193, (2004)
[59] Ozkan, G. M.; Akilli, H., Flow control around bluff bodies by attached permeable plates, Intl J. Mech. Aerosp. Ind. Mechatron. Engng, 8, 5, 1035-1039, (2014)
[60] Ozkan, G. M., Akilli, H. & Sahin, B.2013Effect of high porosity screen on the near wake of a circular cylinder. In EPJ Web of Conferences, vol. 45, 01071. EDP Sciences.
[61] Rae, W. H.; Pope, A., Low-Speed Wind Tunnel Testing, (1984), Wiley
[62] Revell, J. D.; Kuntz, H. L.; Balena, F. J.; Horne, C.; Storms, B. L.; Dougherty, R. P., Trailing-edge flap noise reduction by porous acoustic treatment, AIAA J., 1646, 12-14, (1997)
[63] Rothman, D. H., Cellular-automaton fluids: a model for flow in porous media, Geophysics, 53, 4, 509-518, (1988)
[64] Sarradj, E. & Geyer, T.2007Noise generation by porous airfoils. In Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference, Rome, Italy. AIAA 2007-3719.
[65] Schulze, J.; Sesterhenn, J., Optimal distribution of porous media to reduce trailing edge noise, J. Comput. Fluids, 78, 41-53, (2013) · Zbl 1284.76359
[66] Schwartz, L. M.; Martys, N.; Bentz, D. P.; Garboczi, E. J.; Torquato, S., Cross-property relations and permeability estimation in model porous media, Phys. Rev. E, 48, 6, 4584, (1993)
[67] Showkat Ali, S. A., Liu, X. & Azarpeyvand, M.2016Bluff body flow and noise control using porous media. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France. AIAA 2016-2754.
[68] Snyder, L. J.; Stewart, W. E., Velocity and pressure profiles for Newtonian creeping flow in regular packed beds of spheres, AIChE J., 12, 1, 167-173, (1966)
[69] Standish, K. J.; Van Dam, C. P., Aerodynamic analysis of blunt trailing edge airfoils, J. Solar Energy Engng, 125, 4, 479-487, (2003)
[70] Succi, S.; Benzi, R.; Higuera, F., The lattice Boltzmann equation: a new tool for computational fluid-dynamics, Physica D, 47, 1-2, 219-230, (1991)
[71] Sueki, T.; Takaishi, T.; Ikeda, M.; Arai, N., Application of porous material to reduce aerodynamic sound from bluff bodies, Fluid Dyn. Res., 42, 1, (2010) · Zbl 1423.76014
[72] Theunissen, R.; Di Sante, A.; Riethmuller, M. L.; Van Den Braembussche, R. A., Confidence estimation using dependent circular block bootstrapping: application to the statistical analysis of PIV measurements, Exp. Fluids, 44, 4, 591-596, (2008)
[73] Umnova, O.; Attenborough, K.; Standley, E.; Cummings, A., Behavior of rigid-porous layers at high levels of continuous acoustic excitation: theory and experiment, J. Acoust. Soc. Am., 114, 3, 1346-1356, (2003)
[74] Vafai, K.; Kim, S. J., Fluid mechanics of the interface region between a porous medium and a fluid layer – an exact solution, Intl J. Heat Fluid Flow, 11, 3, 254-256, (1990)
[75] Venkataraman, D.; Bottaro, A., Numerical modeling of flow control on a symmetric aerofoil via a porous, compliant coating, Phys. Fluids, 24, 9, (2012)
[76] Williamson, C. H. K., Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 28, 1, 477-539, (1996)
[77] Winnemöller, T.; Dam, C. P., Design and numerical optimization of thick airfoils including blunt trailing edges, J. Aircraft, 44, 1, 232-240, (2007)
[78] Zhou, B. Y., Gauger, N. R., Koh, S. R., Meinke, M. & Schröder, W.2015On the adjoint-based control of trailing-edge turbulence and noise minimization via porous material. In Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference, Dallas, TX. AIAA 2015-2530.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.