×

zbMATH — the first resource for mathematics

Rheology of dense granular suspensions. (English) Zbl 1415.76680
Summary: Suspensions are composed of mixtures of particles and fluid and are omnipresent in natural phenomena and in industrial processes. The present paper addresses the rheology of concentrated suspensions of non-colloidal particles. While hydrodynamic interactions or lubrication forces between the particles are important in the dilute regime, they become of lesser significance when the concentration is increased, and direct particle contacts become dominant in the rheological response of concentrated suspensions, particularly those close to the maximum volume fraction where the suspension ceases to flow. The rheology of these dense suspensions can be approached via a diversity of approaches that the paper introduces successively. The mixture of particles and fluid can be seen as a fluid with effective rheological properties but also as a two-phase system wherein the fluid and particles can experience relative motion. Rheometry can be undertaken at an imposed volume fraction but also at imposed values of particle normal stress, which is particularly suited to yield examination of the rheology close to the jamming transition. The response of suspensions to unsteady or transient flows provides access to different features of the suspension rheology. Finally, beyond the problem of suspension of rigid, non-colloidal spheres in a Newtonian fluid, there are a great variety of complex mixtures of particles and fluid that remain relatively unexplored.

MSC:
76T20 Suspensions
76T25 Granular flows
PDF BibTeX Cite
Full Text: DOI
References:
[1] Acrivos, A.; Mauri, R.; Fan, X., Shear-induced resuspension in a Couette device, Intl J. Multiphase Flow, 19, 797-802, (1993) · Zbl 1144.76334
[2] Amarsid, L.; Delenne, J. Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F., Viscoinertial regime of immersed granular flows, Phys. Rev. E, 96, (2017)
[3] Andreotti, B.; Forterre, Y.; Pouliquen, O., Granular Media: Between Fluid and Solid, (2013), Cambridge University Press · Zbl 1388.76001
[4] Aussillous, P.; Chauchat, J.; Pailha, M.; Médale, M.; Guazzelli, É., Investigation of the mobile granular layer in bedload transport by laminar shearing flows, J. Fluid Mech., 736, 594-615, (2013) · Zbl 1294.76263
[5] Bagnold, R. A., Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proc. R. Soc. Lond. A, 225, 49-63, (1954)
[6] Batchelor, G., The stress system in a suspension of force-free particles, J. Fluid Mech., 41, 545-570, (1970) · Zbl 0193.25702
[7] Batchelor, G.; Green, J., The determination of the bulk stress in a suspension of spherical particles to order c2, J. Fluid Mech., 56, 401-427, (1972) · Zbl 0246.76108
[8] Batchelor, G.; Green, J., The hydrodynamic interaction of two small freely-moving spheres in a linear flow field, J. Fluid Mech., 56, 375-400, (1972) · Zbl 0247.76088
[9] Blanc, F.; Lemaire, É.; Meunier, A.; Peters, F., Microstructure in sheared non-Brownian concentrated suspensions, J. Rheol., 57, 273-292, (2013)
[10] Blanc, F.; Peters, F.; Lemaire, É., Local transient rheological behavior of concentrated suspensions, J. Rheol., 55, 835-854, (2011)
[11] Bonnoit, C.; Darnige, T.; Clement, É.; Lindner, A., Inclined plane rheometry of a dense granular suspension, J. Rheol., 54, 65-79, (2010)
[12] Bounoua, S.; Kuzhir, P.; Lemaire, É., Normal stress differences in non-Brownian fiber suspensions, J. Rheol., 60, 661-671, (2016)
[13] Boyer, F.; Guazzelli, É.; Pouliquen, O., Unifying suspension and granular rheology, Phys. Rev. Lett., 107, (2011)
[14] Boyer, F.; Pouliquen, O.; Guazzelli, É., Dense suspensions in rotating-rod flows: normal stresses and particle migration, J. Fluid Mech., 686, 5-25, (2011) · Zbl 1241.76008
[15] Brown, E.; Jaeger, H. M., Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming, Rep. Prog. Phys., 77, (2014)
[16] Butler, J. E.; Snook, B., Microstructural dynamics and rheology of suspensions of rigid fibers, Annu. Rev. Fluid Mech., 50, 299-318, (2018) · Zbl 1384.76056
[17] Cassar, C.; Nicolas, M.; Pouliquen, O., Submarine granular flows down inclined planes, Phys. Fluids, 17, (2005) · Zbl 1188.76024
[18] Chateau, X.; Ovarlez, G.; Trung, K. L., Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids, J. Rheol., 52, 489-506, (2008)
[19] Clavaud, C.; Bérut, A.; Metzger, B.; Forterre, Y., Revealing the frictional transition in shear-thickening suspensions, Proc. Natl Acad. Sci. USA, 114, 5147-5152, (2017)
[20] Corté, L.; Chaikin, P. M.; Gollub, J. P.; Pine, D. J., Random organization in periodically driven systems, Nat. Phys., 4, 420-424, (2008)
[21] Couturier, E.; Boyer, F.; Pouliquen, O.; Guazzelli, É., Suspensions in a tilted trough: second normal stress difference, J. Fluid Mech., 686, 26-39, (2011) · Zbl 1241.76014
[22] Dagois-Bohy, S.; Hormozi, S.; Guazzelli, É.; Pouliquen, O., Rheology of dense suspensions of non-colloidal spheres in yield-stress fluids, J. Fluid Mech., 776, R2, (2015) · Zbl 1382.76268
[23] Dai, S.-C.; Bertevas, E.; Qi, F.; Tanner, R. I., Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices, J. Rheol., 57, 493-510, (2013)
[24] Dbouk, T.; Lobry, L.; Lemaire, É., Normal stresses in concentrated non-Brownian suspensions, J. Fluid Mech., 715, 239-272, (2013) · Zbl 1284.76378
[25] Deboeuf, A.; Gauthier, G.; Martin, J.; Yurkovetsky, Y.; Morris, J. F., Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy, Phys. Rev. Lett., 102, (2009)
[26] Degiuli, E.; Düring, G.; Lerner, E.; Wyart, M., Unified theory of inertial granular flows and non-Brownian suspensions, Phys. Rev. E, 91, (2015)
[27] Düring, G.; Lerner, E.; Wyart, M., Effect of particle collisions in dense suspension flows, Phys. Rev. E, 94, (2016)
[28] Einstein, A., Eine neue Bestimmung der Moleküldimensionen, Ann. Phys., 19, 289-306, (1906) · JFM 37.0811.01
[29] Einstein, A., Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen, Ann. Phys., 34, 591-592, (1911) · JFM 42.0855.04
[30] Fall, A.; Lemaître, A.; Bertrand, F.; Bonn, D.; Ovarlez, G., Shear thickening and migration in granular suspensions, Phys. Rev. Lett., 105, (2010)
[31] Forterre, Y.; Pouliquen, O., Flows of dense granular media, Annu. Rev. Fluid Mech., 40, 1-24, (2008) · Zbl 1136.76051
[32] Gadala-Maria, F.1979 The rheology of concentrated suspensions. PhD thesis, Stanford University.
[33] Gadala-Maria, F.; Acrivos, A., Shear-induced structure in a concentrated suspension of solid spheres, J. Rheol., 24, 799-814, (1980)
[34] Gallier, S.; Lemaire, É.; Lobry, L.; Peters, F., Effect of confinement in wall-bounded non-colloidal suspensions, J. Fluid Mech., 799, 100-127, (2016)
[35] Gallier, S.; Lemaire, É.; Peters, F.; Lobry, L., Rheology of sheared suspensions of rough frictional particles, J. Fluid Mech., 757, 514-549, (2014) · Zbl 1416.76326
[36] Garland, S.; Gauthier, G.; Martin, J.; Morris, J. F., Normal stress measurements in sheared non-Brownian suspensions, J. Rheol., 57, 71, (2013)
[37] Guazzelli, É.; Morris, J. F., A Physical Introduction to Suspension Dynamics, (2012), Cambridge University Press · Zbl 1426.76003
[38] Iverson, R. M.; Reid, M. E.; Iverson, N. R.; Lahusen, R. G.; Logan, M.; Mann, J. E.; Brien, D. L., Acute sensitivity of landslide rates to initial soil porosity, Science, 290, 513-516, (2000)
[39] Jackson, R., Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid, Chem. Engng Sci., 52, 2457-2469, (1997)
[40] Jerome, J. J. S.; Vandenberghe, N.; Forterre, Y., Unifying impacts in granular matter from quicksand to cornstarch, Phys. Rev. Lett., 117, (2016)
[41] Karnis, A.; Goldsmith, H. L.; Mason, S. G., The kinetics of flowing dispersions: I. Concentrated suspensions of rigid particles, J. Colloid Interface Sci., 22, 531-553, (1966)
[42] Koh, C. J.; Hookham, P.; Leal, L. G., An experimental investigation of concentrated suspension flows in a rectangular channel, J. Fluid Mech., 266, 1-32, (1994)
[43] Kulkarni, S. D.; Metzger, B.; Morris, J. F., Particle-pressure-induced self-filtration in concentrated suspensions, Phys. Rev. E, 82, (2010)
[44] Leighton, D.; Acrivos, A., Viscous resuspension, Chem. Engng Sci., 41, 1377-1384, (1986)
[45] Leighton, D.; Acrivos, A., The shear-induced migration of particles in concentrated suspensions, J. Fluid Mech., 181, 415-439, (1987)
[46] Lemaître, A.; Roux, J. N.; Chevoir, F., What do dry granular flows tell us about dense non-Brownian suspension rheology?, Rheol. Acta, 48, 925-942, (2009)
[47] Lerner, E.; Düring, G.; Wyart, M., A unified framework for non-Brownian suspension flows and soft amorphous solids, Proc. Natl Acad. Sci. USA, 109, 4798-4803, (2012)
[48] Lhuillier, D., Migration of rigid particles in non-Brownian viscous suspensions, Phys. Fluids, 21, (2009) · Zbl 1183.76304
[49] Lyon, M. K.; Leal, L. G., An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems, J. Fluid Mech., 363, 25-56, (1998) · Zbl 0967.76512
[50] Madraki, Y.; Hormozi, S.; Ovarlez, G.; Guazzelli, É.; Pouliquen, O., Enhancing shear thickening, Phys. Rev. Fluids, 2, (2017)
[51] Mari, R.; Seto, R.; Morris, J. F.; Denn, M. M., Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions, J. Rheol., 58, 1693-1724, (2014)
[52] Mari, R.; Seto, R.; Morris, J. F.; Denn, M. M., Discontinuous shear thickening in brownian suspensions by dynamic simulation, Proc. Natl Acad. Sci. USA, 112, 15326-15330, (2015)
[53] Metzger, B.; Butler, J. E., Clouds of particles in a periodic shear flow, Nat. Phys., 24, (2012)
[54] Mewis, J.; Wagner, N. J., Colloidal Suspension Rheology, (2011), Cambridge University Press · Zbl 1274.76348
[55] Morris, J.; Boulay, F., Curvilinear flows of noncolloidal suspensions: the role of normal stresses, J. Rheol., 43, 1213-1237, (1999)
[56] Nott, P. R.; Brady, J., Pressure-driven flow of suspensions: simulation and theory, J. Fluid Mech., 275, 157-199, (1994) · Zbl 0925.76835
[57] Nott, P. R.; Guazzelli, É.; Pouliquen, O., The suspension balance model revisited, Phys. Fluids, 23, (2011)
[58] O’Hern, C. S.; Silbert, L. E.; Liu, A. J.; Nagel, S. R., Jamming at zero temperature and zero applied stress: the epitome of disorder, Phys. Rev. E, 68, (2003)
[59] Olsson, P.; Teitel, S., Critical scaling of shear viscosity at the jamming transition, Phys. Rev. Lett., 99, 17, (2007)
[60] Ouriemi, M.; Aussillous, P.; Guazzelli, É., Sediment dynamics. Part 1. Bed-load transport by laminar shearing flows, J. Fluid Mech., 636, 295-319, (2009) · Zbl 1183.76908
[61] Ovarlez, G.; Bertrand, F.; Rodts, S., Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging, J. Rheol., 50, 259-292, (2006)
[62] Pailha, M.; Pouliquen, O., A two-phase flow description of the initiation of underwater granular avalanches, J. Fluid Mech., 633, 115-135, (2009) · Zbl 1183.76906
[63] Parsi, F.; Gadala-Maria, F., Fore-and-aft asymmetry in a concentrated suspension of solid spheres, J. Rheol., 31, 725-732, (1987)
[64] Peters, F.; Ghigliotti, G.; Gallier, S.; Blanc, F.; Lemaire, E.; Lobry, L., Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: a numerical study, J. Rheol., 60, 715-732, (2016)
[65] Pine, D. J.; Gollub, J. P.; Brady, J. F.; Leshansky, A. M., Chaos and threshold for irreversibility in sheared suspensions, Nature, 438, 997-1000, (2005)
[66] Pitman, E. B.; Le, L., A two-fluid model for avalanche and debris flows, Phil. Trans. R. Soc. Lond. A, 363, 1573-1601, (2005) · Zbl 1152.86302
[67] Richardson, J. F.; Zaki, W. N., Sedimentation and fluidization. Part I, Trans. Inst. Chem. Engrs, 32, 35-53, (1954)
[68] Rondon, L.; Pouliquen, O.; Aussillous, P., Granular collapse in a fluid: role of the initial volume fraction, Phys. Fluids, 23, (2011)
[69] Sierou, A.; Brady, J., Rheology and microstructure in concentrated noncolloidal suspensions, J. Rheol., 46, 1031-1056, (2002)
[70] Singh, A.; Nott, P. R., Experimental measurements of the normal stresses in sheared Stokesian suspensions, J. Fluid Mech., 490, 293-320, (2003) · Zbl 1063.76512
[71] Snook, B.; Butler, J. E.; Guazzelli, É., Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow, J. Fluid Mech., 786, 128-153, (2016)
[72] Snook, B.; Davidson, L. M.; Butler, J. E.; Pouliquen, O.; Guazzelli, É., Normal stress differences in suspensions of rigid fibres, J. Fluid Mech., 758, 486-507, (2014)
[73] Stickel, J. J.; Powell, R. L., Fluid mechanics and rheology of dense suspensions, Annu. Rev. Fluid Mech., 37, 129-149, (2005) · Zbl 1117.76066
[74] Tapia, F., Shaikh, S., Butler, J. E, Pouliquen, O. & Guazzelli, É.2017Rheology of concentrated suspensions of non-colloidal rigid fibres. J. Fluid Mech.827, R5. doi:10.1017/jfm.2017.552
[75] Trulsson, M.; Andreotti, B.; Claudin, P., Transition from the viscous to inertial regime in dense suspensions, Phys. Rev. Lett., 109, (2012)
[76] Trulsson, M.; Degiuli, E.; Wyart, M., Effect of friction on dense suspension flows of hard particles, Phys. Rev. E, 95, (2017) · Zbl 1404.74030
[77] Wagner, N. J.; Brady, J. F., Shear thickening in colloidal dispersions, Phys. Today, 62, 27-32, (2009)
[78] Wilson, H. J., An analytic form for the pair distribution function and rheology of a dilute suspension of rough spheres in plane strain flow, J. Fluid Mech., 534, 97-114, (2005) · Zbl 1074.76051
[79] Wyart, M.; Cates, M. E., Discontinuous shear thickening without inertia in dense non-Brownian suspensions, Phys. Rev. Lett., 112, (2014)
[80] Yeo, K.; Maxey, M. R., Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow, J. Fluid Mech., 682, 491-518, (2011) · Zbl 1241.76408
[81] Zarraga, I. E.; Hill, D. A.; Leighton, D. T. Jr, The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids, J. Rheol., 44, 185-220, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.