×

Premixed flame-wall interaction in a narrow channel: impact of wall thermal conductivity and heat losses. (English) Zbl 1415.76743

Summary: The flow physics controlling the stabilisation of a methane/air laminar premixed flame in a narrow channel (internal width \(\ell_i=5\)mm) is revisited from numerical simulations. Combustion is described with complex chemistry and transport properties, along with a coupled simulation of heat transfer at and within the wall. To conduct a thorough analysis of the flame-wall interaction, the steady flame is obtained after applying a procedure to find the inlet mass flow rate that exactly matches the flame mass burning rate. The response of the premixed flame shape to various operating conditions is then analysed in terms of flame propagation velocity and flow topology in the vicinity of the reactive front. We focus on the interrelations between the flame speed, the configuration taken by the flame surface, the flow deviation induced by the heat released and the fluxes at the wall. Compared to an adiabatic flame, the flame speed increases with edge-flame quenching at an isothermal cold wall in the absence of a boundary layer, decreases with a boundary layer, to increase again with heat-transfer coupling within the wall. A regime diagram is proposed to delineate between flame shapes in order to build a classification versus heat-transfer properties. Under a small level of convective heat transfer with the ambient air surrounding the channel, the larger the thermal conductivity in the solid, the faster the reaction zone propagates in the vicinity of the wall, leaving the centreline reaction zone behind. The premixed flame front is then concave towards the fresh gases on the axis of symmetry (so-called tulip flame) with a flame speed higher than in the adiabatic case. Increasing the heat loss at the wall through convection with ambient air, the flame shape becomes convex (mushroom flame) and the flame speed decreases below its adiabatic level. Scaling laws are provided for the flame speed under these various regimes. Mesh resolution was calibrated, with and without heat loss, from simulations of one-dimensional detailed chemistry flames, leading to mesh resolution of \(12.5\mu\)m for detailed chemistry and \(25.0\mu\)m with a skeleton mechanism. The quality of the resolution was also assessed from multi-physics budgets derived from first principles, involving upstream-flame heat retrocession by the wall leading to flow acceleration, budgets bringing physical insights into flame/wall interaction. Additional overall mesh convergence tests of the multi-physics solution would have been desirable, but were not conducted due to the high computing cost of these fully compressible simulations, hence also solving for the acoustic field with low convective velocities.

MSC:

76V05 Reaction effects in flows
80A25 Combustion
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bai, B.; Chen, Z.; Zhang, H.; Chen, S., Flame propagation in a tube with wall quenching of radicals, Combust. Flame, 160, 12, 2810-2819, (2013) · doi:10.1016/j.combustflame.2013.07.008
[2] Bianco, F.; Chibbaro, S.; Legros, G., Low-dimensional modeling of flame dynamics in heated microchannels, Chem. Engng Sci., 122, 533-544, (2015) · doi:10.1016/j.ces.2014.09.048
[3] Boehman, A. L., Radiation heat transfer in catalytic monoliths, AIChE J., 44, 12, 2745-2755, (1998) · doi:10.1002/aic.690441215
[4] Bouheraoua, L.; Domingo, P.; Ribert, G., Large-eddy simulation of a supersonic lifted jet flame: analysis of the turbulent flame base, Combust. Flame, 179, 199-218, (2017) · doi:10.1016/j.combustflame.2017.01.020
[5] Bucci, M.; Robinet, J.-M.; Chibbaro, S., Global stability analysis of 3D micro-combustion model, Combust. Flame, 167, 132-148, (2016) · doi:10.1016/j.combustflame.2016.02.018
[6] Chakraborty, S.; Mukhopadhyay, A.; Sen, S., Interaction of Lewis number and heat loss effects for a laminar premixed flame propagating in a channel, Intl J. Therm. Sci., 47, 1, 84-92, (2008) · doi:10.1016/j.ijthermalsci.2007.01.025
[7] Chigier, N.; Gemci, T., A review of micro propulsion technology, 41st Aerospace Sciences Meeting and Exhibit, 670, (2003), AIAA
[8] Choi, C. W.; Puri, I., Response of flame speed to positively and negatively curved premixed flames, Combust. Theor. Model., 7, 205-220, (2003) · doi:10.1088/1364-7830/7/3/301
[9] Clavin, P., Premixed combustion and gasdynamics, Annu. Rev. Fluid Mech., 26, 321-352, (1994) · Zbl 0802.76070 · doi:10.1146/annurev.fl.26.010194.001541
[10] Clavin, P.; Pelcé, P.; He, L., One-dimensional vibratory instability of planar flames propagating in tubes, J. Fluid Mech., 216, 299-322, (1990) · Zbl 0698.76059 · doi:10.1017/S0022112090000441
[11] Clavin, P.; Searby, G., Combustion Waves and Fronts in Flows, (2016), Cambridge University Press · Zbl 1355.76002 · doi:10.1017/CBO9781316162453
[12] Curtiss, C. F.; Hirschfelder, J. O., Transport properties of multicomponent gas mixtures, J. Chem. Phys., 17, 6, 550-555, (1949) · Zbl 0039.42806 · doi:10.1063/1.1747319
[13] Davy, H., Some researches on flame, Phil. Trans. R. Soc. Lond. A, 107, 45-76, (1817) · doi:10.1098/rstl.1817.0008
[14] Domingo, P.; Vervisch, L., DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modeling, Combust. Flame, 177, 109-122, (2017) · doi:10.1016/j.combustflame.2016.12.008
[15] Domingo, P.; Vervisch, L.; Veynante, D., Large-Eddy Simulation of a lifted methane-air jet flame in a vitiated coflow, Combust. Flame, 152, 3, 415-432, (2008) · doi:10.1016/j.combustflame.2007.09.002
[16] Douglas, J. Jr, On the numerical integration of 2u∂x2 + 2u∂y2 = ∂u∂t by implicit methods, J. Soc. Ind. Appl. Maths, 3, 1, 42-65, (1955) · Zbl 0067.35802 · doi:10.1137/0103004
[17] Duchaine, F.; Corpron, A.; Pons, L.; Moureau, V.; Nicoud, F.; Poinsot, T., Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade, Intl J. Heat Fluid Flow, 30, 6, 1129-1141, (2009) · doi:10.1016/j.ijheatfluidflow.2009.07.004
[18] Ducros, F.; Ferrand, V.; Nicoud, F.; Weber, C.; Darracq, D.; Gacherieu, C.; Poinsot, T., Large-eddy simulation of the shock/turbulence interaction, J. Comput. Phys., 152, 2, 517-549, (1999) · Zbl 0955.76045 · doi:10.1006/jcph.1999.6238
[19] Emanuel, G., Analytical Fluid Dynamics, (1994), CRC Press
[20] Fernandez-Pello, A. C., Micropower generation using combustion: issues and approaches, Proc. Combust. Inst., 29, 1, 883-899, (2002) · doi:10.1016/S1540-7489(02)80113-4
[21] Frenklach, M.; Wang, H.; Yu, C.-L.; Goldenberg, M.; Bowman, C. T.; Hanson, R. K.; Davidson, D. F.; Chang, E. J.; Smith, G. P.; Golden, D. M.; Gardiner, W. C.; Lissianski, V.
[22] Ganter, S.; Heinrich, A.; Meier, T.; Kuenne, G.; Jainski, C.; Rissmann, M.; Dreizler, A.; Janicka, J., Numerical analysis of laminar methane-air side-wall-quenching, Combust. Flame, 186, 299-310, (2017) · doi:10.1016/j.combustflame.2017.08.017
[23] Gauthier, G. P.; Bergthorson, J. M., Effect of external heat loss on the propagation and quenching of flames in small heat-recirculating tubes, Combust. Flame, 173, 27-38, (2016) · doi:10.1016/j.combustflame.2016.07.030
[24] Gauthier, G. P.; Watson, G. M. G.; Bergthorson, J. M., An evaluation of numerical models for temperature-stabilized CH4/air flames in a small channel, Combust. Sci. Technol., 184, 6, 850-868, (2012) · doi:10.1080/00102202.2012.675376
[25] Giovangigli, V., Multicomponent flow modeling, Modeling and Simulation in Science, Engineering and Technology, 321, (1999), Birkhäuser, Springer · Zbl 0956.76003
[26] Gonzalez, M.; Borghi, R.; Saouab, A., Interaction of a flame front with its self-generated flow in an enclosure: the ‘tulip flame’ phenomenon, Combust. Flame, 88, 2, 201-220, (1992) · doi:10.1016/0010-2180(92)90052-Q
[27] Goodwin, D.
[28] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solution of the euler equations by finite volume methods using Runge-Kutta time stepping schemes, 14th Fluid and Plasma Dynamics Conference, 1259, (1981), AIAA
[29] Jaouen, N.; Vervisch, L.; Domingo, P., Auto-thermal reforming (ATR) of natural gas: an automated derivation of optimised reduced chemical schemes, Proc. Combust. Inst., 36, 3, 3321-3330, (2017) · doi:10.1016/j.proci.2016.07.110
[30] Jaouen, N.; Vervisch, L.; Domingo, P.; Ribert, G., Automatic reduction and optimisation of chemistry for turbulent combustion modeling: impact of the canonical problem, Combust. Flame, 175, 60-79, (2017) · doi:10.1016/j.combustflame.2016.08.030
[31] Jarosinski, J., A survey of recent studies on flame extinction, Prog. Energy Combust. Sci., 12, 2, 81-116, (1986) · doi:10.1016/0360-1285(86)90014-6
[32] Jiménez, C.; Fernández-Galisteo, D.; Kurdyumov, V. N., DNS study of the propagation and flashback conditions of lean hydrogen-air flames in narrow channels: symmetric and non-symmetric solutions, Int. J. Hydrogen Energy, 40, 36, 12541-12549, (2015) · doi:10.1016/j.ijhydene.2015.07.037
[33] Ju, Y.; Choi, C. W., An analysis of sub-limit flame dynamics using opposite propagating flames in mesoscale channels, Combust. Flame, 133, 4, 483-493, (2003) · doi:10.1016/S0010-2180(03)00058-0
[34] Ju, Y.; Maruta, K., Microscale combustion: technology development and fundamental research, Prog. Energy Combust. Sci., 37, 6, 669-715, (2011) · doi:10.1016/j.pecs.2011.03.001
[35] Ju, Y.; Xu, B., Theoretical and experimental studies on mesoscale flame propagation and extinction, Proc. Combust. Inst., 30, 2, 2445-2453, (2005) · doi:10.1016/j.proci.2004.08.234
[36] Ju, Y.; Xu, B., Studies of the effects of radical quenching and flame stretch on mesoscale combustion, 44th AIAA Aerospace Sciences Meeting and Exhibit, 1351, (2006), AIAA
[37] Kagan, L.; Sivashinsky, G., On the transition from deflagration to detonation in narrow tubes, Flow Turbul. Combust., 84, 3, 423-437, (2010) · Zbl 1423.80025 · doi:10.1007/s10494-010-9252-9
[38] Kaisare, N. S.; Vlachos, D. G., A review on microcombustion: fundamentals, devices and applications, Prog. Energy Combust. Sci., 38, 3, 321-359, (2012) · doi:10.1016/j.pecs.2012.01.001
[39] Karlovitz, B.; Denniston, D. W.; Knapschaefer, D. H.; Wells, F. E., Flame propagation across velocity gradients, 4th Symposium (Intl.) on Combustion, 613-620, (1953), The Combustion Institute
[40] Kazakov, K. A., Analytical study in the mechanism of flame movement in horizontal tubes, Phys. Fluids, 24, 2, (2012) · doi:10.1063/1.3684712
[41] Kee, R. J.; Rupley, F. M.; Miller, J. A.
[42] Kim, N. I.; Aizumi, S.; Yokomori, T.; Kato, S.; Fujimori, T.; Maruta, K., Development and scale effects of small swiss-roll combustors, Proc. Combust. Inst., 31, 2, 3243-3250, (2007) · doi:10.1016/j.proci.2006.08.077
[43] Kim, N. I.; Kataoka, T.; Maruyama, S.; Maruta, K., Flammability limits of stationary flames in tubes at low pressure, Combust. Flame, 141, 1, 78-88, (2005) · doi:10.1016/j.combustflame.2004.12.011
[44] Kim, N. I.; Maruta, K., A numerical study on propagation of premixed flames in small tubes, Combust. Flame, 146, 1, 283-301, (2006) · doi:10.1016/j.combustflame.2006.03.004
[45] Kizaki, Y.; Nakamura, H.; Tezuka, T.; Hasegawa, S.; Maruta, K., Effect of radical quenching on ch 4/air flames in a micro flow reactor with a controlled temperature profile, Proc. Combust. Inst., 35, 3, 3389-3396, (2015) · doi:10.1016/j.proci.2014.07.030
[46] Koren, C.
[47] Kuo, C. H.; Ronney, P. D., Numerical modeling of non-adiabatic heat-recirculating combustors, Proc. Combust. Inst., 31, 2, 3277-3284, (2007) · doi:10.1016/j.proci.2006.08.082
[48] Kurdyumov, V. N., Lewis number effect on the propagation of premixed flames in narrow adiabatic channels: symmetric and non-symmetric flames and their linear stability analysis, Combust. Flame, 158, 7, 1307-1317, (2011) · doi:10.1016/j.combustflame.2010.11.011
[49] Kurdyumov, V. N.; Fernandez-Tarrazo, E., Lewis number effect on the propagation of premixed laminar flames in narrow open ducts, Combust. Flame, 128, 4, 382-394, (2002) · doi:10.1016/S0010-2180(01)00358-3
[50] Kurdyumov, V. N.; Jiménez, C., Propagation of symmetric and non-symmetric premixed flames in narrow channels: influence of conductive heat-losses, Combust. Flame, 161, 4, 927-936, (2014) · doi:10.1016/j.combustflame.2013.10.002
[51] Lewis, B.; Von Elbe, G., Combustion, Flames and Explosions of Gases, (1987), Elsevier
[52] Li, J.; Chou, S. K.; Yang, W. M.; Li, Z. W., A numerical study on premixed micro-combustion of ch 4-air mixture: effects of combustor size, geometry and boundary conditions on flame temperature, Chem. Engng J., 150, 1, 213-222, (2009) · doi:10.1016/j.cej.2009.02.015
[53] Lodato, G.; Vervisch, L.; Domingo, P., A compresssible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet, Phys. Fluids, 21, (2009) · Zbl 1183.76323 · doi:10.1063/1.3068761
[54] Lodier, G.; Merlin, C.; Domingo, P.; Vervisch, L.; Ravet, F., Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature, Combust. Flame, 159, 11, 3358-3371, (2012) · doi:10.1016/j.combustflame.2012.07.006
[55] Maruta, K.; Kataoka, T.; Kim, N. I.; Minaev, S.; Fursenko, R., Characteristics of combustion in a narrow channel with a temperature gradient, Proc. Combust. Inst., 30, 2, 2429-2436, (2005) · doi:10.1016/j.proci.2004.08.245
[56] Merlin, C.; Domingo, P.; Vervisch, L., Immersed boundaries in large eddy simulation of compressible flows, Flow Turbul. Combust., 90, 1, 29-68, (2013) · doi:10.1007/s10494-012-9421-0
[57] Michaelis, B.; Rogg, B., FEM-simulation of laminar flame propagation. I: two-dimensional flames, J. Comput. Phys., 196, 2, 417-447, (2004) · Zbl 1115.76350 · doi:10.1016/j.jcp.2003.10.033
[58] Miesse, C. M.; Masel, R. I.; Jensen, C. D.; Shannon, M. A.; Short, M., Submillimeter-scale combustion, AIChE J., 50, 12, 3206-3214, (2004) · doi:10.1002/aic.10271
[60] Nakamura, H.; Fan, A.; Minaev, S.; Sereshchenko, E.; Fursenko, R.; Tsuboi, Y.; Maruta, K., Bifurcations and negative propagation speeds of methane/air premixed flames with repetitive extinction and ignition in a heated microchannel, Combust. Flame, 159, 4, 1631-1643, (2012) · doi:10.1016/j.combustflame.2011.11.004
[61] Norton, D. G.; Vlachos, D. G., Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures, Chem. Engng Sci., 58, 21, 4871-4882, (2003) · doi:10.1016/j.ces.2002.12.005
[62] Petit, X.; Ribert, G.; Lartigue, G.; Domingo, P., Large-eddy simulation of supercritical fluid injection, J. Supercritical Fluids, 84, 61-73, (2013) · doi:10.1016/j.supflu.2013.09.011
[63] Pizza, G.; Frouzakis, C. E.; Mantzaras, J.; Tomboulides, A. G.; Boulouchos, K., Three-dimensional simulations of premixed hydrogen/air flames in microtubes, J. Fluid Mech., 658, 463-491, (2010) · Zbl 1205.76290 · doi:10.1017/S0022112010001837
[64] Poinsot, T. J.; Haworth, D. C.; Bruneaux, G., Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion, Combust. Flame, 95, 1-2, 118-132, (1993) · doi:10.1016/0010-2180(93)90056-9
[65] Poinsot, T. J.; Lele, S. K., Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., 101, 1, 104-129, (1992) · Zbl 0766.76084 · doi:10.1016/0021-9991(92)90046-2
[66] Richecoeur, F.; Kyritsis, D. C., Experimental study of flame stabilization in low reynolds and dean number flows in curved mesoscale ducts, Proc. Combust. Inst., 30, 2, 2419-2427, (2005) · doi:10.1016/j.proci.2004.08.015
[67] Ronney, P. D., Analysis of non-adiabatic heat-recirculating combustors, Combust. Flame, 135, 4, 421-439, (2003) · doi:10.1016/j.combustflame.2003.07.003
[68] Ruetsch, G. R.; Vervisch, L.; Liñán, A., Effects of heat release on triple flame, Phys. Fluids, 7, 6, 1447-1454, (1995) · doi:10.1063/1.868531
[69] Sánchez-Sanz, M.; Fernández-Galisteo, D.; Kurdyumov, V., Effect of the equivalence ratio, Damköhler number, Lewis number and heat release on the stability of laminar premixed flames in microchannels, Combust. Flame, 161, 5, 1282-1293, (2014) · doi:10.1016/j.combustflame.2013.11.015
[70] Short, M.; Kessler, D. A., Asymptotic and numerical study of variable-density premixed flame propagation in a narrow channel, J. Fluid Mech., 638, 305-337, (2009) · Zbl 1183.76922 · doi:10.1017/S0022112009990966
[71] Smith, G. P.; Golden, D. M.; Frenklach, M.; Moriarty, N. W.; Eiteneer, B.; Goldenberg, M.; Bowman, C. T.; Hanson, R. K.; Song, S.; Gardiner, W. C.; Lissianski, V. V.; Qin, Z.
[72] Smooke, M. D.; Giovangigli, V., Formulation of the premixed and nonpremixed test problems, Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, 1-28, (1991), Springer · doi:10.1007/BFb0035362
[73] Srinivasan, R.; Hsing, I.; Berger, P. E.; Jensen, K. F.; Firebaugh, S. L.; Schmidt, M. A.; Harold, M. P.; Lerou, J. J.; Ryley, J. F., Micromachined reactors for catalytic partial oxidation reactions, AIChE J., 43, 11, 3059-3069, (1997) · doi:10.1002/aic.690431117
[74] Subramanian, V.; Domingo, P.; Vervisch, L., Large-eddy simulation of forced ignition of an annular bluff-body burner, Combust. Flame, 157, 3, 579-601, (2010) · doi:10.1016/j.combustflame.2009.09.014
[75] Swanson, R.; Turkel, E., On central-difference and upwind schemes, J. Comput. Phys., 101, 2, 292-306, (1992) · Zbl 0757.76044 · doi:10.1016/0021-9991(92)90007-L
[76] Tatsumi, S.; Martinelli, L.; Jameson, A., Flux-limited schemes for the compressible Navier-Stokes equations, AIAA J., 33, 2, 252-261, (1995) · Zbl 0824.76058 · doi:10.2514/3.12422
[77] Tsai, C. H., The asymmetric behavior of steady laminar flame propagation in ducts, Combust. Sci. Tech., 180, 3, 533-545, (2008) · doi:10.1080/00102200701807177
[78] Veeraragavan, A.; Cadou, C. P., Flame speed predictions in planar micro/mesoscale combustors with conjugate heat transfer, Combust. Flame, 158, 11, 2178-2187, (2011) · doi:10.1016/j.combustflame.2011.04.006
[79] Vican, J.; Gajdeczko, B. F.; Dryer, F. L.; Milius, D. L.; Aksay, I. A.; Yetter, R. A., Development of a microreactor as a thermal source for microelectromechanical systems power generation, Proc. Combust. Inst., 29, 1, 909-916, (2002) · doi:10.1016/S1540-7489(02)80115-8
[80] Walther, D. C.; Ahn, J., Advances and challenges in the development of power-generation systems at small scales, Prog. Energy Combust. Sci., 37, 5, 583-610, (2011) · doi:10.1016/j.pecs.2010.12.002
[81] Weinberg, F. J.; Rowe, D. M.; Min, G.; Ronney, P. D., On thermoelectric power conversion from heat recirculating combustion systems, Proc. Combust. Inst., 29, 1, 941-947, (2002) · doi:10.1016/S1540-7489(02)80119-5
[82] Xie, Z.; Yang, Z.; Zhang, L.; Liu, C., Effects of non-catalytic surface reactions on the ch 4-air premixed flame within micro-channels, RSC Adv., 5, 43, 34272-34280, (2015) · doi:10.1039/C4RA16738D
[83] Xu, B.; Ju, Y., Experimental study of spinning combustion in a mesoscale divergent channel, Proc. Combust. Inst., 31, 2, 3285-3292, (2007) · doi:10.1016/j.proci.2006.07.241
[84] Yetter, R. A.; Yang, V.; Wu, M. H.; Wang, Y.; Milius, D.; Aksay, I. A.; Dryer, F. L., Combustion issues and approaches for chemical microthrusters, Intl J. Energy Mat. Chem. Prop., 6, 4, 394-424, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.