×

zbMATH — the first resource for mathematics

Absolute zeta functions and absolute automorphic forms. (English) Zbl 1416.11137
Summary: We construct absolute zeta functions from absolute automorphic forms via the zeta regularization. We study analytic properties of absolute zeta functions. Especially we look at regularized Euler constants. We show a generalization of Euler’s formula for the original Euler constant by using special values of absolute zeta functions.

MSC:
11M41 Other Dirichlet series and zeta functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Soulé, C., LES variétés sur le corps à un élément, Mosc. Math. J., 4, 217-244, (2004) · Zbl 1103.14003
[2] Kurokawa, N., Zeta functions over \(\mathbb{F}_1\), Proc. Japan Acad. Ser. A, 81, 180-184, (2005) · Zbl 1141.11316
[3] Deitmar, A., Remarks on zeta functions and K-theory over \(\mathbb{F}_1\), Proc. Japan Acad. Ser. A, 82, 141-146, (2006) · Zbl 1173.14004
[4] Connes, A.; Consani, C., Schemes over \(\mathbb{F}_1\) and zeta functions, Compos. Math., 146, 1383-1415, (2010) · Zbl 1201.14001
[5] Connes, A.; Consani, C., Characteristic 1, entropy and the absolute point, Noncommut. Geom. Arith. Relat. Top., 75-139, (2011) · Zbl 1273.11140
[6] Kurokawa, N.; Ochiai, H., Dualities for absolute zeta functions and multiple gamma functions, Proc. Japan Acad. Ser. A, 89, 75-79, (2013) · Zbl 1373.11063
[7] Deitmar, A.; Koyama, S.; Kurokawa, N., Counting and zeta functions over \(\mathbb{F}_1\), AbhandLungen Math. Sem. Univ. Hambg., 85, 59-71, (2015) · Zbl 1320.11057
[8] Kurokawa, N.; Tanaka, H., Absolute zeta functions and the automorphy, Kodai Math. J., 40, 584-614, (2017) · Zbl 1390.14067
[9] Euler, L., Evolutio formulae integralis \(\int \partial x(\frac{1}{1 - x} + \frac{1}{l x})\) a termino \(x = 0\) usque ad \(x = 1\) extensae, Nova Acta Acad. Sci. Imp. Petrop., 4, 3-16, (1789), (Presented Feb. 29, 1776). (Opera Omnia, Series I, Vol. 18, pp. 318-334)[E629]
[10] Euler, L., Nova methodus quantitates integrales determinandi, Novi Comment. Acad. Sci. Petrop., 19, 66-102, (1775), (Presented Oct. 10, 1774). (Opera Omnia, Series I, 17, 421-457)[E464]
[11] Euler, L., Speculationes analyticae, Novi Comment. Acad. Sci. Petrop., 20, 59-79, (1776), (Presented Dec. 8, 1774). (Opera Omnia, Series I, Vol. 18, pp. 1-22)[E475]
[12] Euler, L., De valore formulae integralis \(\int \frac{x^{a - 1} d x}{l x} \frac{(1 - x^b)(1 - x^c)}{1 - x^n}\) a termino \(x = 0\) usque ad \(x = 1\) extensae, Nova Acta Acad. Sci. Imp. Petrop., 1777, II, 29-47, (1780), (Presented Aug. 19, 1776). (Opera Omnia, Series I, Vol. 18, pp. 51-68)[E500]
[13] Barnes, E. W., On the theory of the multiple gamma function, Trans. Cambridge Philos. Soc., 19, 374-425, (1904)
[14] Deninger, C., Local \(L\)-factors of motives and regularized determinants, Invent. Math., 107, 135-150, (1992) · Zbl 0762.14015
[15] Kurokawa, N.; Koyama, S., Multiple sine functions, Forum Math., 15, 839-876, (2003) · Zbl 1065.11065
[16] Lerch, M., Dals̆í studie v oboru malmsténovských r̆ad, Rozpravy C̆eské Akad., 3, 1-61, (1894)
[17] Baker, A., Transcendental number theory, (1975), Cambridge University Press · Zbl 0297.10013
[18] Onodera, K., Extremal values of multiple gamma and sine functions, Adv. Math., 224, 895-909, (2010) · Zbl 1190.33022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.