×

A critical fractional Choquard-Kirchhoff problem with magnetic field. (English) Zbl 1416.49012


MSC:

49J40 Variational inequalities
26A33 Fractional derivatives and integrals
35J60 Nonlinear elliptic equations
47G20 Integro-differential operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alves, C. O.; Corrês, F. J. S. A. T.; Ma, F., Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49, 85-93, (2005) · Zbl 1130.35045
[2] Alves, C. O.; Figueiredo, G. M.; Yang, M. B., Multiple semilclassical solutions for a nonlinear Choquard equation with magnetic field, Asympt. Anal., 96, 135-159, (2016) · Zbl 1339.35278
[3] Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381, (1973) · Zbl 0273.49063
[4] Applebaum, D., Lévy processes — From probability to finance quantum groups, Notices Amer. Math. Soc., 51, 1336-1347, (2004) · Zbl 1053.60046
[5] Arioli, G.; Szulkin, A., A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal., 170, 277-295, (2003) · Zbl 1051.35082
[6] Autuori, G.; Fiscella, A.; Pucci, P., Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125, 699-714, (2015) · Zbl 1323.35015
[7] Binlin, Z.; Squassina, M.; Xia, Z., Fractional NLS equations with magnetic field, critical frequency and critical growth, Manuscript Math., 155, 115-140, (2018) · Zbl 1401.35311
[8] Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477, (1983) · Zbl 0541.35029
[9] Caffarelli, L., Nonlinear Partial Differential Equations, 7, Non-local diffusions, drifts and games, 37-52, (2012), Springer · Zbl 1266.35060
[10] Chang, X.; Wang, Z. Q., Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity, 26, 479-494, (2013) · Zbl 1276.35080
[11] Cingolani, S.; Secchi, S., Semiclassical limit for nonlinear Schrodinger equations with electromagnetic fields, J. Math. Anal. Appl., 275, 108-130, (2002) · Zbl 1014.35087
[12] P. d’Avenia and M. Squassina, Ground states for fractional magnetic operators, to appear in ESAIM Control Optim. Calc. Var.; preprint.
[13] Di Cosmo, J.; Van Schaftingen, J., Semiclassical stationary states for nonlinear Schrödiner equations under a strong external magnetic field, J. Differential Equations, 259, 596-627, (2015) · Zbl 1315.35200
[14] Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573, (2012) · Zbl 1252.46023
[15] Felmer, P.; Quaas, A.; Tan, J., Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142, 1237-1262, (2012) · Zbl 1290.35308
[16] Figueiredo, G. M.; Bisci, G. Molica; Servadei, R., On a fractional Kirchhoff-type equation via Krasnoselskii’s genus, Asymptot. Anal., 94, 347-361, (2015) · Zbl 1330.35500
[17] Fiscella, A.; Valdinoci, E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94, 156-170, (2014) · Zbl 1283.35156
[18] Fu, Y.; Zhang, X., Multiple solutions for a class of \(p(x)\)-Laplacian equations in \(\mathbb{R}^N\) involving the critical exponent, Proc. Roy. Soc. A, 466, 1667-1686, (2010) · Zbl 1189.35128
[19] Azorero, J. Garcia; Alonso, I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Tran. Amer. Math. Soc., 323, 877-895, (1991) · Zbl 0729.35051
[20] Kurata, K., Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields, Nonlinear Anal., 41, 763-778, (2000) · Zbl 0993.35081
[21] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298-305, (2000) · Zbl 0948.81595
[22] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66, 056108, (2002)
[23] Lions, P. L., Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 49, 315-334, (1982) · Zbl 0501.46032
[24] P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, Part I, Rev. Mat. Iberoam.1 (1985) 145-201, Erratum in Part II, 1 (1985) 45-121. · Zbl 0704.49005
[25] Lü, D., Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations, Commun. Pure Appl. Anal., 15, 1781-1795, (2016) · Zbl 1351.35185
[26] Mingqi, X.; Pucci, P.; Squassina, M.; Zhang, B. L., Nonlocal Schrodinger-Kirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst. Ser. A, 37, 503-521, (2017)
[27] Bisci, G. Molica; Rădulescu, V.; Servadei, R., Variational Methods for Nonlocal Fractional Equations, (2016), Cambridge University Press · Zbl 1356.49003
[28] Bisci, G. Molica; Repovš, D., Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420, 167-176, (2014) · Zbl 1294.35021
[29] Palatucci, G.; Pisante, A., Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50, 799-829, (2014) · Zbl 1296.35064
[30] Pucci, P.; Xiang, M. Q.; Zhang, B. L., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian in \(\mathbb{R}^N\), Calc. Var. Partial Differential Equations, 54, 2785-2806, (2015) · Zbl 1329.35338
[31] Pucci, P.; Xiang, M. Q.; Zhang, B. L., Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Adv. Nonlinear Anal., 5, 27-55, (2016) · Zbl 1334.35395
[32] P. Pucci, M. Q. Xiang and B. L. Zhang, Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian, to appear in Adv. Calc. Var.; https://doi.org/10.1515/acv-2016-0049.
[33] Secchi, S., Ground state solutions for the fractional Schrödinger in \(\mathbb{R}^N\), J. Math. Phys., 54, 031501, (2013) · Zbl 1281.81034
[34] Squassina, M.; Volzone, B., Brézis-Bourgain-Mironescu formula for magnetic operators, C. R. Math. Acad. Sci. Paris, 354, 825-831, (2016) · Zbl 1358.46033
[35] Strauss, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162, (1977) · Zbl 0356.35028
[36] Wang, F.; Xiang, M. Q., Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent, Electron. J. Differential Equations, 2016, 1-11, (2016) · Zbl 1357.35290
[37] Xiang, M. Q.; Zhang, B. L.; Rădulescu, V., Existence of solutions for perturbed fractional \(p\)-Laplacian equations, J. Differential Equations, 260, 1392-1413, (2016) · Zbl 1332.35387
[38] Xiang, M. Q.; Zhang, B. L.; Zhang, X., A nonhomogeneous fractional \(p\)-Kirchhoff type problem involving critical exponent in \(\mathbb{R}^N\), Adv. Nonlinear Stud., 17, 611-640, (2017) · Zbl 1372.35348
[39] Zhang, X.; Zhang, B. L.; Xiang, M. Q., Ground states for fractional Schrödinger equations involving a critical nonlinearity, Adv. Nonlinear Anal., 5, 293-314, (2016) · Zbl 1346.35224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.