×

zbMATH — the first resource for mathematics

TLS formulation and core reduction for problems with structured right-hand sides. (English) Zbl 1416.65103
Summary: The total least squares (TLS) represents a popular data fitting approach for solving linear approximation problems \(A x \approx b\) (i.e., with a vector right-hand side) and \(A X \approx B\) (i.e., with a matrix right-hand side) contaminated by errors. This paper introduces a generalization of TLS formulation to problems with structured right-hand sides. First, we focus on the case, where the right-hand side and consequently also the solution are tensors. We show that whereas the basic solvability result can be obtained directly by matricization of both tensors, generalization of the core problem reduction is more complicated. The core reduction allows to reduce mathematically the problem dimensions by removing all redundant and irrelevant data from the system matrix and the right-hand side. We prove that the core problems within the original tensor problem and its matricized counterpart are in general different. Then, we concentrate on problems with even more structured right-hand sides, where the same model \(A\) corresponds to a set of various tensor right-hand sides. Finally, relations between the matrix and tensor core problem are discussed.

MSC:
65F20 Numerical solutions to overdetermined systems, pseudoinverses
15A09 Theory of matrix inversion and generalized inverses
15A69 Multilinear algebra, tensor calculus
65F25 Orthogonalization in numerical linear algebra
PDF BibTeX Cite
Full Text: DOI
References:
[1] Björck, Å., A band-Lanczos algorithm for least squares and total least squares problems, (Book of Abstracts of 4th Total Least Squares and Errors-in-Variables Modeling Workshop in Leuven, (2006), Katholieke Universiteit Leuven, Leuven, Belgium), 22-23
[2] Å. Björck, Block bidiagonal decomposition and least squares problems with multiple right-hand sides, unpublished manuscript.
[3] Bader, B. W.; Kolda, T. G., Algorithm 862: M{\scatlab} tensor classes for fast algorithm prototyping, ACM Trans. Math. Software, 32, 4, 635-653, (2006) · Zbl 1230.65054
[4] Golub, G. H.; Van Loan, C. F., An analysis of the total least squares problem, SIAM J. Numer. Anal., 17, 6, 883-893, (1980) · Zbl 0468.65011
[5] Golub, G. H.; Van Loan, C. F., Matrix computations, (2013), Johns Hopkins University Press Baltimore · Zbl 1268.65037
[6] Hnětynková, I.; Plešinger, M.; Sima, D. M., Solvability of the core problem with multiple right-hand sides in the TLS sense, SIAM J. Matrix Anal. Appl., 37, 3, 861-876, (2016) · Zbl 1343.15002
[7] Hnětynková, I.; Plešinger, M.; Sima, D. M.; Strakoš, Z.; Van Huffel, S., The total least squares problem in \(A X \approx B\): a new classification with the relationship to the classical works, SIAM J. Matrix Anal. Appl., 32, 3, 748-770, (2011) · Zbl 1235.15016
[8] Hnětynková, I.; Plešinger, M.; Strakoš, Z., On solution of total least squares problems with multiple right-hand sides, Proc. Appl. Math. Mech., 8, 10815-10816, (2008) · Zbl 1396.65090
[9] Hnětynková, I.; Plešinger, M.; Strakoš, Z., The core problem within linear approximation problem \(A X \approx B\) with multiple right-hand sides, SIAM J. Matrix Anal. Appl., 34, 3, 917-931, (2013) · Zbl 1279.65041
[10] Hnětynková, I.; Plešinger, M.; Strakoš, Z., Band generalization of the Golub-Kahan bidiagonalization, generalized Jacobi matrices, and the core problem, SIAM J. Matrix Anal. Appl., 36, 2, 417-434, (2015) · Zbl 1320.65057
[11] Hnětynková, I.; Plešinger, M.; Žáková, J., Modification of TLS algorithm for solving \(\mathcal{F}_2\) linear data Fitting problems, Proc. Appl. Math. Mech., 17, 1, 749-750, (2017)
[12] Kressner, D.; Plešinger, M.; Tobler, C., A preconditioned low-rank CG method for parameter-dependent Lyapunov matrix equations, Numer. Linear Algebra Appl., 21, 5, 666-684, (2014) · Zbl 1340.65077
[13] Kressner, D.; Tobler, C., Krylov subspace methods for linear systems with tensor product structure, SIAM J. Matrix Anal. Appl., 31, 4, 1688-1714, (2010) · Zbl 1208.65044
[14] Kiers, H. A.L., Towards a standardized notation and terminology in multiway analysis, J. Chemom., 14, 3, 105-122, (2000)
[15] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 3, 455-500, (2009) · Zbl 1173.65029
[16] Korving, J. G.; Rudnyi, E. B., Oberwolfach benchmark collection, in dimension reduction of large-scale systems, Lect. Notes Comput. Sci. Eng., 45, 311-316, (2005)
[17] Li, C.-K.; Liu, X.-G.; Wang, X.-F., Extension of the total least square problem using general unitarily invariant norms, Linear Multilinear Algebra, 55, 1, 71-79, (2007) · Zbl 1112.65037
[18] Ottersten, B.; Asztély, D.; Kristensson, M.; Parkvall, S., A statistical approach to subspace based estimation with applications in telecommunications, (Van Huffel, S., Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, (1997), SIAM Publications Philadelphia), 285-294 · Zbl 0892.62076
[19] Paige, C. C.; Strakoš, Z., Scaled total least squares fundamentals, Numer. Math., 91, 1, 117-146, (2002) · Zbl 0998.65046
[20] Paige, C. C.; Strakoš, Z., Unifying least squares, total least squares and data least squares, (Van Huffel, S.; Lemmerling, P., Total Least Squares and Errors-in-Variables Modeling, (2002), Kluwer Academic Publishers Dordrecht), 25-34 · Zbl 1001.65033
[21] Paige, C. C.; Strakoš, Z., Core problem in linear algebraic systems, SIAM J. Matrix Anal. Appl., 27, 3, 861-875, (2006) · Zbl 1097.15003
[22] Plešinger, M., The total least squares problem and reduction of data in \(A X \approx B\), (2008), Technical University of Liberec Liberec, Czech Republic, Ph.D. thesis
[23] Rosen, J. B.; Park, H.; Glick, J., Total least norm for linear and nonlinear structured problems, (Van Huffel, S., Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, (1997), SIAM Publications Philadelphia), 203-214 · Zbl 0879.65106
[24] Sima, D. M., Regularization techniques in model Fitting and parameter estimation, (2006), Katholieke Universiteit Leuven Leuven, Belgium, Ph.D. thesis
[25] Söderström, T.; Soverini, U.; Mahata, K., Perspectives on errors-in-variables estimation for dynamic systems, (Van Huffel, S.; Lemmerling, P., Total Least Squares and Errors-in-Variables Modeling, (2002), Kluwer Academic Publishers Dordrecht), 271-280 · Zbl 0995.65008
[26] Stewart, G. W.; Sun, J.-G., Matrix perturbation theory, (1990), Academic Press Boston
[27] Tobler, C., Low-rank tensor methods for linear systems and eigenvalue problems, (2012), ETH Zürich Zürich, available at
[28] Tucker, L. R., Implications of factor analysis of three-way matrices for measurement of change, (Harris, C. W., Problems in Measuring Change, (1963), University of Wisconsin Press), 122-137
[29] Tucker, L. R., The extension of factor analysis to three-dimensional matrices, (Gulliksen, H.; Frederiksen, N., Contributions to Mathematical Psychology, (1964), Holt, Rinehardt & Winston New York), 110-127
[30] Tucker, L. R., Some mathematical notes on three-mode factor analysis, Psychometrika, 31, 3, 279-311, (1966)
[31] Van Huffel, S., Documented Fortran 77 programs of the extended classical total least squares algorithm, the partial singular value decomposition algorithm and the partial total least squares algorithm, (1988), Katholieke Universiteit Leuven Leuven, Belgium, Internal report ESAT-KUL 88/1
[32] Van Huffel, S., The extended classical total least squares algorithm, J. Comput. Appl. Math., 25, 1, 111-119, (1989) · Zbl 0664.65035
[33] (Van Huffel, S., Recent Advances in Total Least Squares Techniques and Error-in-Variables Modeling, Proceedings of the Second Int. Workshop on TLS and EIV, (1997), SIAM Publications Philadelphia, PA) · Zbl 0861.00018
[34] (Van Huffel, S.; Lemmerling, P., Total Least Squares and Error-in-Variables ModelingAnalysis, Algorithms and Applications, (2002), Kluwer Academic Publishers Dordrecht, The Netherlands) · Zbl 1002.65500
[35] Van Huffel, S.; Vandewalle, J., The total least squares problemcomputational aspects and analysis, (1991), SIAM Publications Philadelphia, PA
[36] Wang, X.-F., Total least squares problem with the arbitrary unitarily invariant norms, Linear Multilinear Algebra, 65, 3, 438-456, (2017) · Zbl 1367.15017
[37] Wang, X.-F.; Li, R.-C., Monotonicity of unitarily invariant norms, Linear Algebra Appl., 466, 254-266, (2015) · Zbl 1303.15029
[38] Wei, M., The analysis for the total least squares problem with more than one solution, SIAM J. Matrix Anal. Appl., 13, 3, 746-763, (1992) · Zbl 0758.65039
[39] Wei, M., Algebraic relations between the total least squares and least squares problems with more than one solution, Numer. Math., 62, 1, 123-148, (1992) · Zbl 0761.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.