zbMATH — the first resource for mathematics

Robust Rayleigh quotient minimization and nonlinear eigenvalue problems. (English) Zbl 1416.65148

65H17 Numerical solution of nonlinear eigenvalue and eigenvector problems
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A18 Eigenvalues, singular values, and eigenvectors
47J10 Nonlinear spectral theory, nonlinear eigenvalue problems
65K05 Numerical mathematical programming methods
Full Text: DOI
[1] P.-A. Absil and K. A. Gallivan, Accelerated line-search and trust-region methods, SIAM J. Numer. Anal., 47 (2009), pp. 997–1018, . · Zbl 1191.65067
[2] S. Ahmed, Robust Estimation and Sub-Optimal Predictive Control for Satellites, Ph.D. thesis, Imperial College London, London, 2012.
[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000, . · Zbl 0965.65058
[4] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust Optimization, Princeton University Press, Princeton, NJ, 2009.
[5] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data, Math. Program., 88 (2000), pp. 411–424. · Zbl 0964.90025
[6] P. Benner, A. Onwunta, and M. Stoll, A low-rank inexact Newton-Krylov method for stochastic eigenvalue problems, Comput. Methods Appl. Math., (2018), .
[7] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller, Optimizing spatial filters for robust EEG single-trial analysis, IEEE Signal Process. Mag., 25 (2008), pp. 41–56.
[8] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, John Wiley & Sons, New York, 2012. · Zbl 0968.68140
[9] G. Ghanem and D. Ghosh, Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition, Internat. J. Numer. Methods Engrg., 72 (2007), pp. 486–504. · Zbl 1194.74153
[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University, Press, Baltimore, MD, 1996. · Zbl 0865.65009
[11] M. Grant and S. Boyd, CVX: MATLAB Software for Disciplined Convex Programming, Version 2.1, 2017, .
[12] E. Jarlebring, S. Kvaal, and W. Michiels, An inverse iteration method for eigenvalue problems with eigenvector nonlinearities, SIAM J. Sci. Comput., 36 (2014), pp. A1978–A2001, . · Zbl 1307.65068
[13] M. Kawanabe, W. Samek, K.-R. Müller, and C. Vidaurre, Robust common spatial filters with a maxmin approach, Neural Comput., 26 (2014), pp. 349–376.
[14] S.-J. Kim and S. Boyd, A minimax theorem with applications to machine learning, signal processing, and finance, SIAM J. Optim., 19 (2008), pp. 1344–1367, . · Zbl 1175.90412
[15] S.-J. Kim, A. Magnani, and S. Boyd, Robust Fisher discriminant analysis, in Advances in Neural Information Processing Systems 18 (NIPS 2005), MIT Press, 2006, pp. 659–666.
[16] C. Le Bris, Computational chemistry from the perspective of numerical analysis, Acta Numer., 14 (2005), pp. 363–444. · Zbl 1119.65390
[17] J. Li and P. Stoica, eds., Robust Adaptive Beamforming, John Wiley & Sons, New York, 2005.
[18] M. Lichman, UCI Machine Learning Repository, 2013, .
[19] X. Liu, X. Wang, Z. Wen, and Y. Yuan, On the convergence of the self-consistent field iteration in Kohn–Sham density functional theory, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 546–558, . · Zbl 1319.65041
[20] O. L. Mangasarian and E. W. Wild, Multisurface proximal support vector machine classification via generalized eigenvalues, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005), pp. 1–6.
[21] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1152.74303
[22] J. Nocedal and S. Wright, Numerical Optimization, Springer Science & Business Media, Berlin, 2006. · Zbl 1104.65059
[23] V. R. Saunders and I. H. Hillier, A “Level–Shifting” method for converging closed shell Hartree–Fock wave functions, Int. J. Quantum Chem., 7 (1973), pp. 699–705.
[24] S. Shahbazpanahi, A. B. Gershman, Z.-Q. Luo, and K. M. Wong, Robust adaptive beamforming for general-rank signal models, IEEE Trans. Signal Process., 51 (2003), pp. 2257–2269.
[25] N. D. Sidiropoulos, T. Davidson, and Z.-Q. Luo, Transmit beamforming for physical-layer multicasting, IEEE Trans. Signal Process., 54 (2006), pp. 2239–2251. · Zbl 1374.94600
[26] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes, Using the ADAP learning algorithm to forecast the onset of diabetes mellitus, in Proc. Annu. Symp. Comput. Appl. Med. Care, IEEE Computer Society Press, 1988, pp. 261–265.
[27] M. Soltanalian, A. Gharanjik, M. R. B. Shankar, and B. Ottersten, Grab-n-Pull: An optimization framework for fairness-achieving networks, in Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 3301–3305.
[28] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, Boston, 1990. · Zbl 0706.65013
[29] L. Thøgersen, J. Olsen, D. Yeager, P. Jørgensen, P. Sałek, and T. Helgaker, The trust-region self-consistent field method: Towards a black-box optimization in Hartree–Fock and Kohn–Sham theories, J. Chem. Phys., 121 (2004), pp. 16–27.
[30] S. Vorobyov, A. Gershman, and Z.-Q. Luo, Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem, IEEE Trans. Signal Process., 51 (2003), pp. 313–324.
[31] P. Xanthopoulos, M. R. Guarracino, and P. M. Pardalos, Robust generalized eigenvalue classifier with ellipsoidal uncertainty, Ann. Oper. Res., 216 (2014), pp. 327–342. · Zbl 1296.90084
[32] C. Yang, W. Gao, and J. C. Meza, On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl., 30 (2009), pp. 1773–1788, . · Zbl 1228.65081
[33] C. Yang, J. C. Meza, and L.-W. Wang, A trust region direct constrained minimization algorithm for the Kohn–Sham equation, SIAM J. Sci. Comput., 29 (2007), pp. 1854–1875, . · Zbl 1154.65340
[34] S. Yu, L.-C. Tranchevent, B. De Moor, and Y. Moreau, Kernel-based Data Fusion for Machine Learning, Springer, Berlin, 2011. · Zbl 1227.68003
[35] L.-H. Zhang, On a self-consistent-field-like iteration for maximizing the sum of the Rayleigh quotients, J. Comput. Appl. Math., 257 (2014), pp. 14–28. · Zbl 1294.65065
[36] L.-H. Zhang and R.-C. Li, Maximization of the sum of the trace ratio on the Stiefel manifold, I: Theory, Sci. China Math., 57 (2014), pp. 2495–2508. · Zbl 1341.90128
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.