×

Bayesian ratemaking with common effects modeled by mixture of Pólya tree processes. (English) Zbl 1416.91227

Summary: In classical models for Bayesian ratemaking, claims are usually assumed to be independent over risks. However, this assumption may be violated because there are situations that could derive possible dependence among the insured individuals. This paper aims to investigate the typical problem of experience ratemaking to account for a special type of dependence that is known as common effects in the literature. Pólya tree processes are employed to model the common effects and, by means of an MCMC scheme, the corresponding Bayesian premiums are numerically computed. This provides a useful alternative to the well known results on Bayesian ratemaking with common effects.

MSC:

91B30 Risk theory, insurance (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
62F15 Bayesian inference
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albrecher, H.; Constantinescu, C.; Loisel, S., Explicit ruin formulas for models with dependence among risks, Insurance Math. Econom., 48, 2, 265-270, (2011) · Zbl 1218.91065
[2] Albrecher, H.; Constantinescu, C.; Loisel, S.; Kantor, J., Simulation of ruin probabilities for risk processes of Markovian type, Monte Carlo Methods Appl., 8, 2, 111-127, (2002) · Zbl 1014.91055
[3] Barron, A.; Schervish, M. J.; Wasserman, L., The consistency of posterior distributions in nonparametric problems, Ann. Statist., 27, 2, 536-561, (1999) · Zbl 0980.62039
[4] Berger, J. O.; Guglielmi, A., Bayesian testing of a parametric model versus nonparametric alternatives, J. Amer. Statist. Assoc., 96, 174-184, (2001) · Zbl 1014.62029
[5] Bolancé, C.; Guillén, M.; Pinquet, J., Time-varying credibility for frequency risk models: estimation and tests for autoregressive specifications on the random effects, Insurance Math. Econom., 33, 273-282, (2008) · Zbl 1103.91355
[6] Bühlmann, H., Experience rating and credibility, Astin Bull., 4, 199-207, (1967)
[7] Bühlmann, H.; Gisler, A., A course in credibility theory and its applications, (2005), Springer Netherlands · Zbl 1108.91001
[8] Cai, X.; Wen, L.; Wu, X.; Zhou, X., Credibility estimation of distribution functions with applications to experience rating in general insurance, N. Am. Actuar. J., 19, 4, 311-335, (2015)
[9] Dunson, D. B.; Park, J. H., Kernel stick-breaking processes, Biometrika, 95, 307-323, (2008) · Zbl 1437.62448
[10] Dunson, D. B.; Xue, Y.; Carin, L., The matrix stick-breaking process: flexible Bayes meta-analysis, J. Amer. Statist. Assoc., 103, 317-327, (2008) · Zbl 1471.62502
[11] Fabius, J., Asymptotic behavior of Bayes estimates, Ann. Statist., 35, 846-856, (1964) · Zbl 0137.12604
[12] Fellingham, G. W.; Kottas, A.; Hartman, B. M., Bayesian nonparametric predictive modeling of group health claims, Insurance Math. Econom., 60, 1-10, (2015) · Zbl 1308.91080
[13] Ferguson, T. S., A Bayesian analysis of some nonparametric problems, Ann. Statist., 1, 209-230, (1973) · Zbl 0255.62037
[14] Ferguson, T. S., Prior distributions on spaces of probability measures, Ann. Statist., 2, 615-629, (1974) · Zbl 0286.62008
[15] Freedman, D. A., On the asymptotic behavior of Bayes estimates in the discrete case, Ann. Statist., 34, 1386-1403, (1963) · Zbl 0137.12603
[16] Frees, E. W.; Wang, P., Credibility using copulas, N. Am. Actuar. J., 9, 31-48, (2005) · Zbl 1085.62121
[17] Gelfand, A. E.; Smith, A. F.M., Sampling-based approaches to calculating marginal densities, J. Amer. Statist. Assoc., 85, 398-409, (1990) · Zbl 0702.62020
[18] Gerber, H. U., An introduction to mathematical risk theory, (1979), SS Huebner Foundation for Insurance Education, Wharton School, University of Pennsylvania · Zbl 0431.62066
[19] Ghosh, J. K.; Ramamoorthi, R. V., Bayesian nonparametrics, (2003), Springer-Verlag New York, Inc · Zbl 1029.62004
[20] Hanson, T. E., Inferences for mixtures of finite polya tree models, J. Amer. Statist. Assoc., 101, 1548-1565, (2006) · Zbl 1171.62323
[21] Hanson, T.; Johnson, W. O., Modeling regression error with a mixture of polya trees, J. Amer. Statist. Assoc., 97, 1020-1033, (2002) · Zbl 1048.62101
[22] Hastings, W. K., Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 1-97, (1970) · Zbl 0219.65008
[23] Heilmann, W. R., On the impact of independence of risks on stop loss premiums, Insurance Math. Econom., 5, 3, 197-199, (1986) · Zbl 0596.62111
[24] Hurlimann, W. S., Bivariate distributions with diatomic conditionals and stop-loss transform of random sums, Statist. Probab. Lett., 17, 1, 329-335, (1993) · Zbl 0779.60012
[25] Ishwaran, H.; James, L. F., Gibbs sampling methods for stick-breaking priors, J. Amer. Statist. Assoc., 96, 161-173, (2001) · Zbl 1014.62006
[26] Kass, R.; Goovaerts, M.; Dhaene, J.; Denuit, M., Modern actuarial risk theory, (2001), Kluwer Boston
[27] Lau, J. W.; Siu, T. K.; Yang, H., On Bayesian mixture credibility, Astin Bull., 36, 02, 573-588, (2006) · Zbl 1162.91422
[28] Lavine, M., Some aspects of polya tree distributions for statistical modeling, Ann. Statist., 20, 1222-1235, (1992) · Zbl 0765.62005
[29] Lavine, M., More aspects of polya tree distributions for statistical modeling, Ann. Statist., 22, 1161-1176, (1994) · Zbl 0820.62016
[30] Lo, A. Y., On a class of Bayesian nonparametric estimates: I. density estimates, Ann. Statist., 12, 1, 351-357, (1984) · Zbl 0557.62036
[31] Makov, U. E.; Smith, A. F.; Liu, Y. H., Bayesian methods in actuarial science, J. Roy. Statist. Soc. Ser. D Statist., 45, 4, 503-515, (1996)
[32] Mauldin, R. D.; Sudderth, M. D.; Williams, S. C., Polya trees and random distributions, Ann. Statist., 20, 1203-1221, (1992) · Zbl 0765.62006
[33] Müller, A., Stop-loss order for portfolios of dependent risks, Insurance Math. Econom., 21, 3, 219-233, (1997) · Zbl 0894.90022
[34] Norberg, R., Credibility theory, (Encyclopedia of Actuarial Science, (2004), Wiley Chichester, UK)
[35] Valdez, E.A., Mo, K., 2002. Ruin probabilities with dependent claims. Working paper, University of New South Wales.; Valdez, E.A., Mo, K., 2002. Ruin probabilities with dependent claims. Working paper, University of New South Wales.
[36] Paddock, S. M., Randomized polya trees: Bayesian nonparamerics for multivariate data analaysis, (1999), Duke University, (Unpublished doctoral thesis)
[37] Paddock, S. M.; Ruggeri, F.; Lavine, M.; West, M., Randomised polya tree models for nonparametric Bayesian inference, Statist. Sinica, 13, 443-460, (2003) · Zbl 1015.62051
[38] Pan, M.; Wang, R.; Wu, X., On the consistency of credibility premiums regarding esscher principle, Insurance Math. Econom., 42, 1, 119-126, (2008) · Zbl 1141.91541
[39] Purcaru, O.; Denuit, M., On the dependence induced by frequency credibility models, Belg. Actuar. Bull., 2, 1, 7379, (2002)
[40] Purcaru, O.; Denuit, M., Dependence in dynamic claim frequency credibility models, Astin Bull., 33, 1, 23-40, (2003) · Zbl 1098.62567
[41] Robert, C.; Casella, G., A short history of Markov chain Monte Carlo: subjective recollections from incomplete data, Statist. Sci., 26, 1, 102-115, (2011) · Zbl 1222.65006
[42] Sethuraman, J., A constructive definition of Dirichlet priors, Statist. Sinica, 4, 639-650, (1994) · Zbl 0823.62007
[43] Valdez, E. A., Empirical investigation of insurance claim dependencies using mixture models, Eur. Actuar. J., 4, 1, 155-179, (2014) · Zbl 1304.62129
[44] Walker, S. G.; Mallick, B. K., Semiparametric accelerated life time model, Biometrics, 55, 477-483, (1999) · Zbl 1059.62531
[45] Wen, L.; Wu, X. Y.; Zhou, X., The credibility premiums for models with dependence induced by common effects, Insurance Math. Econom., 44, 19-25, (2009) · Zbl 1156.91404
[46] Wu, X.; Zhou, X., A new characterization of distortion premiums via countable additivity for comonotonic risks, Insurance Math. Econom., 38, 2, 324-334, (2006) · Zbl 1132.91019
[47] Yeo, K. L.; Valdez, E. A., Claim dependence with common effects in credibility models, Insurance Math. Econom., 38, 609-629, (2006) · Zbl 1168.91420
[48] Zehnwirth, B., Credibility and the Dirichlet process, Scand. Actuar. J., 1, 13-23, (1979) · Zbl 0419.62087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.