A mixed finite element method for nearly incompressible multiple-network poroelasticity. (English) Zbl 1417.65162

Excerpt from the abstract of the manuscript: “The authors present and analyze a new mixed finite element formulation of a general family of quasi-static multiple-network poroelasticity (MPET) equations. Here, the authors focus on the nearly incompressible case for which standard mixed finite element discretizations of the MPET equations perform poorly. Instead, they propose a new mixed finite element formulation based on introducing an additional total pressure variable. By presenting energy estimates for the continuous solutions and a priori error estimates for a family of compatible semidiscretizations, they show that this formulation is robust for nearly incompressible materials, small storage coefficients, and small or vanishing transfer between networks. These theoretical results are corroborated by numerical experiments, including results for blood and interstitial fluid flow interactions.”


65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
92C10 Biomechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L15 Biomechanical solid mechanics
92C35 Physiological flow
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI arXiv


[1] N. J. Abbott, M. E. Pizzo, J. E. Preston, D. Janigro, and R. G. Thorne, {\it The role of brain barriers in fluid movement in the CNS: Is there a “glymphatic” system?}, Acta Neuropathol., 135 (2018), pp. 387-407.
[2] G. Aguilar, F. Gaspar, F. Lisbona, and C. Rodrigo, {\it Numerical stabilization of Biot’s consolidation model by a perturbation on the flow equation}, Internat. J. Numer. Methods Engrg., 75 (2008), pp. 1282-1300. · Zbl 1158.74473
[3] M. Aln\aes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, {\it The FEniCS project version} 1.5, Arch. Numer. Software, 3 (2015), pp. 9-23.
[4] M. Bai, D. Elsworth, and J.-C. Roegiers, {\it Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs}, Water Resources Res., 29 (1993), pp. 1621-1633.
[5] M. Bause, F. Radu, and U. Köcher, {\it Space-time finite element approximation of the Biot poroelasticity system with iterative coupling}, Comput. Methods Appl. Mech. Engrg., 320 (2017), pp. 745-768.
[6] M. Bercovier and O. Pironneau, {\it Error estimates for finite element method solution of the Stokes problem in the primitive variables}, Numer. Math., 33 (1979), pp. 211-224, . · Zbl 0423.65058
[7] L. Berger, R. Bordas, D. Kay, and S. Tavener, {\it Stabilized lowest-order finite element approximation for linear three-field poroelasticity}, SIAM J. Sci. Comput., 37 (2015), pp. A2222-A2245, . · Zbl 1326.76054
[8] D. Boffi, {\it Stability of higher order triangular Hood-Taylor methods for the stationary Stokes equations}, Math. Models Methods Appl. Sci., 4 (1994), pp. 223-235, . · Zbl 0804.76051
[9] D. Boffi, {\it Three-dimensional finite element methods for the Stokes problem}, SIAM J. Numer. Anal., 34 (1997), pp. 664-670, . · Zbl 0874.76032
[10] D. Braess, {\it Finite elements: Theory, Fast Solvers, and Applications in Solid Mechanics}, 2nd ed., Cambridge University Press, Cambridge, UK, 2001. · Zbl 0976.65099
[11] S. C. Brenner and L. R. Scott, {\it The Mathematical Theory of Finite Element Methods}, 3rd ed., Springer, New York, 2008, . · Zbl 1135.65042
[12] F. Brezzi, {\it On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers}, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), pp. 129-151. · Zbl 0338.90047
[13] F. Brezzi and R. S. Falk, {\it Stability of higher-order Hood-Taylor methods}, SIAM J. Numer. Anal., 28 (1991), pp. 581-590, . · Zbl 0731.76042
[14] S. Budday, R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T. C. Ovaert, and E. Kuhl, {\it Mechanical properties of gray and white matter brain tissue by indentation}, J. Mech. Behav. Biomed. Mater., 46 (2015), pp. 318-330.
[15] L. C. Evans, {\it Partial Differential Equations}, Grad. Stud. Math. 19, AMS, Providence, RI, 1998. · Zbl 0902.35002
[16] Q. Fang, {\it Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates}, Biomed. Opt. Express, 1 (2010), pp. 165-175.
[17] L. Guo, J. C. Vardakis, T. Lassila, M. Mitolo, N. Ravikumar, D. Chou, M. Lange, A. Sarrami-Foroushani, B. J. Tully, Z. A. Taylor, S. Varma, A. Venneri, A. F. Frangi, and Y. Ventikos, {\it Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease}, Interface Focus, 8 (2018), 20170019.
[18] X. Hu, C. Rodrigo, F. J. Gaspar, and L. T. Zikatanov, {\it A nonconforming finite element method for the Biot’s consolidation model in poroelasticity}, J. Comput. Appl. Math., 310 (2017), pp. 143-154, . · Zbl 1381.76175
[19] J. J. Iliff, M. Wang, Y. Liao, B. A. Plogg, W. Peng, G. A. Gundersen, H. Benveniste, G. E. Vates, R. Deane, S. A. Goldman, E. A. Nagelhus, and M. Nedergaard, {\it A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid-\(β\)}, Sci. Transl. Med., 4 (2012), 147ra111.
[20] N. A. Jessen, A. S. F. Munk, I. Lundgaard, and M. Nedergaard, {\it The glymphatic system: A beginner’s guide}, Neurochem. Res., 40 (2015), pp. 2583-2599.
[21] J. Korsawe and G. Starke, {\it A least-squares mixed finite element method for Biot’s consolidation problem in porous media}, SIAM J. Numer. Anal., 43 (2005), pp. 318-339, . · Zbl 1086.76041
[22] J. J. Lee, {\it Robust error analysis of coupled mixed methods for Biot’s consolidation model}, J. Sci. Comput., 69 (2016), pp. 610-632, . · Zbl 1368.65234
[23] J. J. Lee, {\it Robust three-field finite element methods for Biot’s consolidation model in poroelasticity}, BIT, 58 (2018), pp. 347-372, . · Zbl 1428.65044
[24] J. J. Lee, K.-A. Mardal, and R. Winther, {\it Parameter-robust discretization and preconditioning of Biot’s consolidation model}, SIAM J. Sci. Comput., 39 (2017), pp. A1-A24, . · Zbl 1381.76183
[25] C. Michler, A. Cookson, R. Chabiniok, E. Hyde, J. Lee, M. Sinclair, T. Sochi, A. Goyal, G. Vigueras, D. Nordsletten, and N. P. Smith, {\it A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model}, Internat. J. Numer. Methods Biomed. Engrg., 29 (2013), pp. 217-232.
[26] M. A. Murad, V. Thomée, and A. F. D. Loula, {\it Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem}, SIAM J. Numer. Anal., 33 (1996), pp. 1065-1083, . · Zbl 0854.76053
[27] T. Nagashima, N. Tamaki, S. Matsumoto, B. Horwitz, and Y. Seguchi, {\it Biomechanics of hydrocephalus: A new theoretical model}, Neurosurgery, 21 (1987), pp. 898-904.
[28] J. M. Nordbotten, T. Rahman, S. I. Repin, and J. Valdman, {\it A posteriori error estimates for approximate solutions of the Barenblatt-Biot poroelastic model}, Comput. Methods Appl. Math., 10 (2010), pp. 302-314. · Zbl 1283.65100
[29] R. Oyarzúa and R. Ruiz-Baier, {\it Locking-free finite element methods for poroelasticity}, SIAM J. Numer. Anal., 54 (2016), pp. 2951-2973, . · Zbl 1457.65210
[30] P. J. Phillips and M. F. Wheeler, {\it A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case}, Comput. Geosci., 11 (2007), pp. 131-144, . · Zbl 1117.74015
[31] E. Piersanti and M. E. Rognes, {\it Supplementary Material (Code) for “A Mixed Finite Element Method for Nearly Incompressible Multiple-Network Poroelasticity} by J. J. Lee, E. Piersanti, K.-A. Mardal, and M. E. Rognes, Zenodo, 2018, .
[32] A. Quarteroni, {\it Numerical Models for Differential Problems}, MS&A Model. Simul. Appl. 2, Springer, Milan, 2009. · Zbl 1170.65326
[33] C. Rodrigo, X. Hu, P. Ohm, J. Adler, F. J. Gaspar, and L. Zikatanov, {\it New Stabilized Discretizations for Poroelasticity and the Stokes’ Equations}, preprint, , 2017. · Zbl 1422.65256
[34] R. E. Showalter, {\it Diffusion in poro-elastic media}, J. Math. Anal. Appl., 251 (2000), pp. 310-340, . · Zbl 0979.74018
[35] R. E. Showalter and B. Momken, {\it Single-phase flow in composite poroelastic media}, Math. Methods Appl. Sci., 25 (2002), pp. 115-139, . · Zbl 1097.35067
[36] C. Taylor and P. Hood, {\it A numerical solution of the Navier-Stokes equations using the finite element technique}, Comput. Fluids, 1 (1973), pp. 73-100. · Zbl 0328.76020
[37] B. J. Tully and Y. Ventikos, {\it Cerebral water transport using multiple-network poroelastic theory: Application to normal pressure hydrocephalus}, J. Fluid Mech., 667 (2011), pp. 188-215. · Zbl 1225.76317
[38] J. C. Vardakis, D. Chou, B. J. Tully, C. C. Hung, T. H. Lee, P.-H. Tsui, and Y. Ventikos, {\it Investigating cerebral oedema using poroelasticity}, Med. Engrg. Phys., 38 (2016), pp. 48-57.
[39] S.-Y. Yi, {\it Convergence analysis of a new mixed finite element method for Biot’s consolidation model}, Numer. Methods Partial Differential Equations, 30 (2014), pp. 1189-1210, . · Zbl 1350.74024
[40] S.-Y. Yi, {\it A study of two modes of locking in poroelasticity}, SIAM J. Numer. Anal., 55 (2017), pp. 1915-1936, . · Zbl 1430.74140
[41] K. Yosida, {\it Functional Analysis}, 6th ed., Classics in Mathematics, Springer-Verlag, Berlin, 1980. · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.