×

Dependency structures for decision tables. (English) Zbl 1418.68187

Summary: In this paper we study decision tables from a more general and abstract outlook. We focus our attention on consistency and inconsistency of decision tables. The starting point of our analysis is the remark that an inconsistent table has different local degrees of consistency depending on how an object and a condition attribute subset are chosen. When \(X\) and \(A\) run respectively over the object and the condition attribute set, we describe the interrelations of local consistencies by means of two set operators. They enable us to generalize the classical Pawlak’s attribute dependency function. The operatorial standpoint correlates the study of decision tables in RST to the classical mathematical theories investigated through functional operators. In this perspective, we are also interested in finding which condition attribute subsets preserve the local positive region. This is the main reason to introduce the notions of local positive essentials and local positive reducts. These attribute subset families, in general, do not satisfy the properties of their counterparts in information table theory. Hence, in order to extend these results to decision tables, we can follow two different approaches: to define a subclass of decision tables in which they hold or to change the nature of the hypergraph induced by the decision discernibility matrix.

MSC:

68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berge, C., Hypergraphs: combinatorics of finite sets, (1984), Elsevier Amsterdam
[2] Birkhoff, G., Lattice theory, (1967), American Mathematical Society Providence, Rhode Island · Zbl 0126.03801
[3] Bisi, C.; Chiaselotti, G.; Marino, G.; Oliverio, P. A., A natural extension of the Young partition lattice, Adv. Geom., 15, 3, 263-280, (2015) · Zbl 1317.05018
[4] Bisi, C.; Chiaselotti, G.; Gentile, T.; Oliverio, P. A., Dominance order on signed partitions, Adv. Geom., 17, 1, 5-29, (2017) · Zbl 1383.05020
[5] Cattaneo, G., Generalized rough sets (preclusivity fuzzy-intuitionistic (BZ) lattices), Stud. Log., 58, 47-77, (1997) · Zbl 0864.03040
[6] Cattaneo, G.; Ciucci, D., Lattices with interior and closure operators and abstract approximation spaces, (Peters, J. F.; Skowron, A., Transactions on Rough Sets X, Special Issue on Foundations of Rough Sets, Lecture Notes in Computer Science, vol. 5656, (2009), Springer-Verlag), 67-116 · Zbl 1248.06005
[7] Cattaneo, G., An investigation about rough set theory: some foundational and mathematical aspects, Fundam. Inform., 108, 197-221, (2011) · Zbl 1241.03060
[8] Cattaneo, G.; Chiaselotti, G.; Gentile, T.; Oliverio, P. A., The lattice structure of equally extended signed partitions: a generalization of the brylawski approach to integer partitions with two possible models: ice piles and semiconductors, Fundam. Inform., 141, 1, 1-36, (2015) · Zbl 1344.37015
[9] Cattaneo, G.; Chiaselotti, G.; Ciucci, D.; Gentile, T., On the connection of hypergraph theory with formal concept analysis and rough set theory, Inf. Sci., 330, 342-357, (2016) · Zbl 1390.68618
[10] Cattaneo, G.; Chiaselotti, G.; Oliverio, P. A.; Stumbo, F., A new discrete dynamical system of signed integer partitions, Eur. J. Comb., 55, 119-143, (2016) · Zbl 1333.05026
[11] Chiaselotti, G.; Ciucci, D.; Gentile, T., Simple undirected graphs as formal contexts, (ICFCA 2015, Lecture Notes in Computer Science, LNAI, vol. 9113, (2015), Springer), 287-302 · Zbl 1312.68184
[12] Chiaselotti, G.; Ciucci, D.; Gentile, T., Simple graphs in granular computing, Inf. Sci., 340-341, 279-304, (1 May 2016)
[13] Chiaselotti, G.; Ciucci, D.; Gentile, T.; Infusino, F., Rough set theory applied to simple undirected graphs, (Proc. RSKT 2015, Lecture Notes in Computer Science, vol. 9436, (2015), Springer), 423-434
[14] Chiaselotti, G.; Ciucci, D.; Gentile, T.; Infusino, F., Preclusivity and simple graphs, (Proc. RSFDGrC 2015, Lecture Notes in Computer Science, vol. 9437, (2015), Springer), 127-137
[15] Chiaselotti, G.; Ciucci, D.; Gentile, T.; Infusino, F., Preclusivity and simple graphs: the n-cycle and n-path cases, (Proc. RSFDGrC 2015, Lecture Notes in Computer Science, vol. 9437, (2015), Springer), 138-148
[16] Chiaselotti, G.; Ciucci, D.; Gentile, T.; Infusino, F., The granular partition lattice of an information table, Inf. Sci., 373, 57-78, (2016)
[17] Chiaselotti, G.; Gentile, T.; Infusino, F.; Oliverio, P. A., Rough sets for n-cycles and n-paths, Appl. Math. Inf. Sci., 10, 1, 117-124, (2016)
[18] Eiter, T.; Gottlob, G., Identifying the minimal transversals of a hypergraph and related problems, SIAM J. Comput., 24, 1278-1304, (1995) · Zbl 0842.05070
[19] Falmagne, J. C.; Doignon, J. P., Learning spaces, (2011), Springer
[20] Frolik, Z.; Katetov, M.; Ptak, V., General topology and its relations to modern analysis and algebra II, (Proceedings of the Second Prague Topological Symposium, (1966), Academic Press New York)
[21] Ganter, B.; Wille, R., Formal concept analysis. mathematical foundations, (1999), Springer-Verlag · Zbl 0909.06001
[22] Hońko, P., Description and classification of complex structured objects by applying similarity measures, Int. J. Approx. Reason., 49, 3, 539-554, (2008) · Zbl 1184.68483
[23] Hońko, P., Relational pattern updating, Inf. Sci., 189, 208-218, (2012)
[24] Hońko, P., Association discovery from relational data via granular computing, Inf. Sci., 10, 136-149, (2013) · Zbl 1284.68497
[25] Huang, A.; Zhao, H.; Zhu, W., Nullity-based matroid of rough sets and its application to attribute reduction, Inf. Sci., 263, 153-165, (2014) · Zbl 1328.68228
[26] Kozlov, D., Combinatorial algebraic topology, Algorithms and Computation in Mathematics, vol. 21, (2001), Springer
[27] Lin, T. Y., Data mining and machine oriented modeling: a granular approach, Appl. Intell., 13, 113-124, (2000)
[28] Lin, T. Y.; Liu, Y.; Huang, W., Unifying rough set theories via large scaled granular computing, Fundam. Inform., 127, 1-4, 413-428, (2013) · Zbl 1275.68143
[29] Lin, T. Y.; Syau, Y.-R., Unifying variable precision and classical rough sets: granular approach, (Rough Sets and Intelligent Systems, vol. 2, (2013)), 365-373
[30] Lin, T. Y.; Liau, C.-J., Granular computing and rough sets - an incremental development, (Data Mining and Knowledge Discovery Handbook, (2010)), 445-468
[31] Lin, T. Y.; Liau, C.-J., Granular computing and rough sets, (The Data Mining and Knowledge Discovery Handbook, (2005)), 535-561
[32] Hu, X.; Lin, T. Y.; Han, J., A new rough sets model based on database systems, (RSFDGrC 2003, Lecture Notes in Artificial Intelligence, (2003), Springer-Verlag)
[33] Li, H.; Zhu, W., Connectedness of graph and matroid by covering-based rough sets, (RSFDGrC, LNCS, (2015)), 149-160
[34] Liu, Y.; Zhu, W., The matroidal structures of the second type of covering-based rough set, (RSKT, LNCS, (2015)), 231-242
[35] Liu, Y.; Zhu, W., On the matroidal structure of generalized rough set based on relation via definable sets, Int. J. Mach. Learn. Cybern., 7, 1, 135-144, (2016)
[36] Miao, D. Q.; Zhao, Y.; Yao, Y. Y.; Li, H. X.; Xu, F. F., Relative reducts in consistent and inconsistent decision tables of the pawlak rough set model, Inf. Sci., 179, 4140-4150, (2009) · Zbl 1183.68608
[37] Pawlak, Z.; Skowron, A., Rudiments of rough sets, Inf. Sci., 177, 3-27, (2007) · Zbl 1142.68549
[38] Pawlak, Z.; Skowron, A., Rough sets: some extensions, Inf. Sci., 177, 28-40, (2007) · Zbl 1142.68550
[39] Pawlak, Z.; Skowron, A., Rough sets and Boolean reasoning, Inf. Sci., 177, 41-73, (2007) · Zbl 1142.68551
[40] Pawlak, Z., Rough sets: theoretical aspects of reasoning about data, (1991), Kluwer Academic Publisher · Zbl 0758.68054
[41] Pedrycz, W., Granular computing: an emerging paradigm, (2001), Springer-Verlag Berlin · Zbl 0966.00017
[42] Pedrycz, W.; Skowron, A.; Kreinovich, V., Handbook of granular computing, (2008), Wiley
[43] Qian, Y.; Liang, J.; Pedrycz, W.; Dang, C., Positive approximation: an accelerator for attribute reduction in rough set theory, Artif. Intell., 174, 597-618, (2010) · Zbl 1205.68310
[44] Pedrycz, A.; Hirota, K.; Pedrycz, W.; Dong, F., Granular representation and granular computing with fuzzy sets, Fuzzy Sets Syst., 203, 17-32, (2012)
[45] Pedrycz, W., Granular computing: analysis and design of intelligent systems, (2013), CRC Press
[46] Polkowski, L., On fractal dimension in information systems: toward exact sets in infinite information systems, Fundam. Inform., 50, 3-4, 305-314, (2002) · Zbl 1012.68218
[47] Sanahuja, S. M., New rough approximations for n-cycles and n-paths, Appl. Math. Comput., 276, 96-108, (2016)
[48] Skowron, A.; Rauszer, C., The discernibility matrices and functions in information systems, Intelligent Decision Support, Theory and Decision Library Series, vol. 11, 331-362, (1992), Springer Netherlands
[49] Skowron, A.; Wasilewski, P., Information systems in modeling interactive computations on granules, Theor. Comput. Sci., 412, 5939-5959, (2011) · Zbl 1223.68118
[50] Skowron, A.; Wasilewski, P., Interactive information systems: toward perception based computing, Theor. Comput. Sci., 454, 240-260, (2012) · Zbl 1286.68480
[51] Stell, J. G., Granulation for graphs, (Spatial Information Theory, Lecture Notes in Computer Science, vol. 1661, (1999)), 417-432
[52] Stell, J. G., Relations in mathematical morphology with applications to graphs and rough sets, (Spatial Information Theory, Lecture Notes in Computer Science, vol. 4736, (2007)), 438-454
[53] Stell, J. G., Relations on hypergraphs, (RAMiCS, Lecture Notes in Computer Science, vol. 7560, (2012)), 326-341 · Zbl 1330.03093
[54] Stell, J. G., Formal concept analysis over graphs and hypergraphs, (GKR2013, Lecture Notes in Computer Science, vol. 8323, (2014)), 165-179
[55] Yao, Y., Constructive and algebraic methods of the theory of rough sets, Inf. Sci., 109, 21-47, (1998) · Zbl 0934.03071
[56] Yao, Y., Granular computing: basic issues and possible solutions, (Proceedings of the 5th Joint Conference on Information Sciences, (2000))
[57] Yao, Y. Y., Information granulation and rough set approximation, Int. J. Intell. Syst., 16, 1, 87-104, (2001) · Zbl 0969.68079
[58] Yao, J. T.; Yao, Y. Y., A granular computing approach to machine learning, (Proceedings of the 1st International Conference on Fuzzy Systems and Knowledge Discovery, (2002)), 732-736 · Zbl 1013.68514
[59] Yao, J. T.; Yao, Y. Y., Granular computing as a basis for consistent classification problems, (Proceedings of PAKDD, vol. 2, (2002)) · Zbl 1013.68514
[60] Yao, Y., A comparative study of formal concept analysis and rough set theory in data analysis, (Rough Sets and Current Trends in Computing, Lecture Notes in Computer Science, vol. 3066, (2004), Springer-Verlag), 59-68 · Zbl 1103.68123
[61] Chen, G.; Zhong, N.; Yao, Y., A hypergraph model of granular computing, (The 2008 IEEE, Int. Conf. Gran. Comput., GrC2008, (2008)), 26-28
[62] Yao, Y.; Zhao, Y., Discernibility matrix simplification for constructing attribute reducts, Inf. Sci., 179, 867-882, (2009) · Zbl 1162.68704
[63] Yao, Y., Notes on rough set approximations and associated measures, J. Nat. Sci. Nanjing Ocean Univ., 29, 5, 399-410, (2010)
[64] Yao, Y. Y., The two sides of the theory of rough sets, Knowl.-Based Syst., 80, 67-77, (2015)
[65] Yao, Y.; Yao, B. X., Covering based rough set approximations, Inf. Sci., 200, 91-107, (2012) · Zbl 1248.68496
[66] Zhu, W.; Wang, S., Rough matroids based on relations, Inf. Sci., 232, 241-252, (2013) · Zbl 1293.05036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.