zbMATH — the first resource for mathematics

A decomposition theorem for singular spaces with trivial canonical class of dimension at most five. (English) Zbl 1419.14063
Let \(X\) be a compact Kähler manifold with numerically trivial canonical bundle. A very important Beauville-Bogomolov decomposition theorem says that such varieties admit an étale cover that decomposes into a product of a torus, irreducible simply connected Calabi-Yau and holomorphic symplectic manifolds.
The main aim of the paper is to generalize this theorem to singular varieties appearing in the minimal model program. This is achieved only partially for normal projective varieties of dimension at most \(5\) with klt singularities. The smooth case uses Kähler-Einstein metrics and Yau’s proof of the Calabi conjecture. In the singular setting the method of proof is different and it uses a generalization of J.-B. Bost’s criterion [Publ. Math., Inst. Hautes tud. Sci. 93, 161–221 (2001; Zbl 1034.14010)] on algebraicity of leaves of a foliation. This result is combined with an earlier work of D. Greb et al. [Adv. Stud. Pure Math. 70, 67–113 (2016; Zbl 1369.14052)] that describes a weak version of the Beauville-Bogomolov decomposition.
An important role in the proof plays Theorem 6.1 describing rank at most \(3\) stable reflexive sheaves with zero first Chern class. This result was the main obtsacle in generalizing the results to higher dimensions. Recently, A. Höring and T. Peternell [Invent. Math. 216, No. 2, 395–419 (2019; Zbl 07061101)] managed to generalize this theorem to higher rank. This result, together with Druels’s ideas, allows to prove a general version of the Beauville-Bogomolov decomposition in the singular case.
Reviewer’s remark: The proof of Proposition 5.4 is incomplete. However, in the proof of the main results one needs only a weaker version where the proof works (see the author’s erratum on http://druel.perso.math.cnrs.fr/publications.html).

14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J17 Singularities of surfaces or higher-dimensional varieties
37F75 Dynamical aspects of holomorphic foliations and vector fields
14E30 Minimal model program (Mori theory, extremal rays)
32C99 Analytic spaces
Full Text: DOI
[1] Araujo, C; Druel, S, On codimension 1 del Pezzo foliations on varieties with mild singularities, Math. Ann., 360, 769-798, (2014) · Zbl 1396.14035
[2] André, Y.: Sur la conjecture des \(p\)-courbures de Grothendieck-Katz et un problème de Dwork. In: Adolphson, A., Baldassarri, F., Berthelot, P., Katz, N., Loeser, F. (eds.) Geometric Aspects of Dwork Theory, vols. I, II, pp. 55-112. Walter de Gruyter, Berlin (2004) · Zbl 0589.14014
[3] Atiyah, MF, Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., 85, 181-207, (1957) · Zbl 0078.16002
[4] Baum, P.F., Bott, R.: On the zeros of meromorphic vector-fields. In: Haefliger, A., Narasimhan, R. (eds.) Essays on Topology and Related Topics. Mémoires dédiés à Georges de Rham. Springer, New York (1970) · Zbl 0193.52201
[5] Birkar, C; Cascini, P; Hacon, CD; McKernan, J, Existence of minimal models for varieties of log general type, J. Am. Math. Soc., 23, 405-468, (2010) · Zbl 1210.14019
[6] Boucksom, S; Demailly, J-P; Păun, M; Peternell, T, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., 22, 201-248, (2013) · Zbl 1267.32017
[7] Beauville, A, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom., 18, 755-782, (1983) · Zbl 0537.53056
[8] Boissière, S., Gabber, O., Serman, O.: Sur le produit de variétés localement factorielles ou Q-factorielles. Preprint arXiv:1104.1861v3 (2011) · Zbl 1342.14022
[9] Balaji, V; Kollár, J, Holonomy groups of stable vector bundles, Publ. Res. Inst. Math. Sci., 44, 183-211, (2008) · Zbl 1146.14023
[10] Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models, In: Bombieri, E., Feferman, S., Kuiper, N.H., Lax, P., Lenstra Jr, H. W., Remmert, R., Schmid, W., Serre, J.-P., Tits, J., Uhlenbeck, K. K. (eds.) Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21. Springer, Berlin (1990) · Zbl 1360.14094
[11] Bogomolov, F., McQuillan, M.: Rational curves on foliated varieties. In: Paolo, C., James, M., Jorge Vitório, P. (eds.) Foliation theory in algebraic geometry. Springer, Cham, pp 21-51 (2016) · Zbl 1337.14041
[12] Bost, J-B, Algebraic leaves of algebraic foliations over number fields, Publ. Math. Inst. Hautes Études Sci, 93, 161-221, (2001) · Zbl 1034.14010
[13] Bost, J.-B.: Germs of analytic varieties in algebraic varieties: canonical metrics and arithmetic algebraization theorems. In: Adolphson, A., Baldassarri, F., Berthelot, P., Katz, N., Loeser, F. (eds.) Geometric Aspects of Dwork Theory, vol. I. Walter de Gruyter II, Berlin (2004) · Zbl 1067.14021
[14] Brion, M.: Some basic results on actions of nonaffine algebraic groups. In: Eddy Campbell, H.E.A., Helminck, A.G., Kraft, H., Wehlau, D. (eds.) Symmetry and Spaces. Progress in Mathematics, vol. 278, pp. 1-20. Birkhäuser Boston, Inc., Boston, MA (2010) · Zbl 1217.14029
[15] Campana, F., Păun, M.: Foliations with positive slopes and birational stability of orbifold cotangent bundles. Preprint arXiv:1508:0245 (2015) · Zbl 0144.19904
[16] Druel, S.: On foliations with nef anti-canonical bundle. Trans. Am. Math. Soc. (2017). doi: 10.1090/tran/6873 · Zbl 1388.14056
[17] Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, Berlin (1995) · Zbl 0819.13001
[18] Esnault, H; Langer, A, On a positive equicharacteristic variant of the \(p\)-curvature conjecture, Doc. Math., 18, 23-50, (2013) · Zbl 1327.14050
[19] Elkik, R, Rationalité des singularités canoniques, Invent. Math., 64, 1-6, (1981) · Zbl 0498.14002
[20] Ein, L; Lazarsfeld, R; Mustaţă, M; Nakamaye, M; Popa, M, Asymptotic invariants of base loci, Ann. Inst. Fourier, 56, 1701-1734, (2006) · Zbl 1127.14010
[21] Fulton, W.: Intersection Theory, 2nd edn., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, (1998) · Zbl 0885.14002
[22] Fulger, M, The cones of effective cycles on projective bundles over curves, Math. Z., 269, 449-459, (2011) · Zbl 1230.14047
[23] Greb, D; Kebekus, S; Kovács, SJ, Extension theorems for differential forms and Bogomolov-sommese vanishing on log canonical varieties, Compos. Math., 146, 193-219, (2010) · Zbl 1194.14056
[24] Greb, D; Kebekus, S; Kovács, S J; Peternell, T, Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci., 114, 87-169, (2011) · Zbl 1258.14021
[25] Greb, D., Kebekus, S., Peternell, T.: Singular spaces with trivial canonical class. In: Minimal Models and Extremal Rays Proceedings of the Conference in Honor of Shigefumi Moris 60th Birthday, Advanced Studies in Pure Mathematics. Kinokuniya Publishing House, Tokyo (2011) (to appear) · Zbl 1369.14052
[26] Greb, D; Kebekus, S; Peternell, T, Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J., 165, 1965-2004, (2016) · Zbl 1360.14094
[27] Greb, D; Kebekus, S; Peternell, T, Movable curves and semistable sheaves, Int. Math. Res. Not., 2016, 536-570, (2016) · Zbl 1342.14022
[28] Gille, P., Polo, P. (eds.): Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 7, Société Mathématique de France, Paris, 2011, Séminaire de Géométrie Algébrique du Bois Marie 1962-64. [Algebraic Geometry Seminar of Bois Marie 1962-64]. A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre, Revised and annotated edition of the 1970 French original · Zbl 0447.53055
[29] Grothendieck, A, Éléments de géométrie algébrique. III. étude cohomologique des faisceaux cohérents. II, Inst. Hautes Études Sci. Publ. Math., 17, 137-223, (1963) · Zbl 0122.16102
[30] Grothendieck, A, Éléments de géométrie algébrique. IV. étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math., 28, 255, (1966) · Zbl 0144.19904
[31] Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique. V. Les schémas de Picard: théorèmes d’existence. Séminaire Bourbaki, Mathematical Society France, Paris, vol. 7, No. 232, pp. 143-161 (1995) · Zbl 1145.14014
[32] Hartshorne, R.: Ample subvarieties of algebraic varieties. In: Notes written in collaboration with C. Musili, Lecture Notes in Mathematics, vol. 156. Springer, New York (1970) · Zbl 0208.48901
[33] Hartshorne, R, Stable reflexive sheaves, Math. Ann., 254, 121-176, (1980) · Zbl 0431.14004
[34] Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. In: Aspects of Mathematics, E31. Friedrich Vieweg & Sohn, Braunschweig (1997) · Zbl 0872.14002
[35] Hwang, J-M; Viehweg, E, Characteristic foliation on a hypersurface of general type in a projective symplectic manifold, Compos. Math., 146, 497-506, (2010) · Zbl 1208.37031
[36] Ilangovan, S., Mehta, V.B., Parameswaran, A.J.: Semistability and semisimplicity in representations of low height in positive characteristic. A Tribute to C. S. Seshadri. A Collection of Articles on Geometry and Representation Theory, pp. 271-282. Birkhäuser, Basel (2003) · Zbl 1067.20061
[37] Kawamata, Y, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., 363, 1-46, (1985) · Zbl 0589.14014
[38] Kawamata, Y, Flops connect minimal models, Publ. Res. Inst. Math. Sci., 44, 419-423, (2008) · Zbl 1145.14014
[39] Kempf, GR, Pulling back bundles, Pac. J. Math., 152, 319-322, (1992) · Zbl 0773.14009
[40] Kollár, J., Mori, S.: Birational geometry of algebraic varieties. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998) · Zbl 1146.14023
[41] Kobayashi, S, The first Chern class and holomorphic symmetric tensor fields, J. Math. Soc. Jpn., 32, 325-329, (1980) · Zbl 0447.53055
[42] Kobayashi, S.: Differential Geometry of Complex Vector Bundles. Publications of the Mathematical Society of Japan. Kanô Memorial Lectures, 5, vol. 15. Princeton University Press, Princeton, NJ (1987)
[43] Kollár, J.: Singularities of pairs. In: Algebraic Geometry-Santa Cruz, 1995: Proceeding Symposium on Pure Mathematics, vol. 62, pp. 221-287. AMS (1997) · Zbl 0814.32003
[44] Kollár, J.: Lectures on Resolution of Singularities. Annals of Mathematics Studies, vol. 166. Princeton University Press, Princeton, NJ (2007) · Zbl 1113.14013
[45] Lang, S.: Fundamentals of Diophantine Geometry. Springer, New York (1983) · Zbl 0528.14013
[46] Langer, A, Semistable sheaves in positive characteristic, Ann. Math. (2), 159, 251-276, (2004) · Zbl 1080.14014
[47] Langer, A, On the S-fundamental group scheme, Ann. Inst. Fourier, 61, 2077-2119, (2011) · Zbl 1247.14019
[48] Langer, A, On positivity and semistability of vector bundles in finite and mixed characteristics, J. Ramanujan Math. Soc., 28A, 287-309, (2013) · Zbl 1295.14032
[49] Loray, F., Pereira, J. V., Touzet, F.: Singular foliations with trivial canonical class. Preprint arXiv:1107.1538v1 (2011) · Zbl 1426.32014
[50] Mehta, V.B., Ramanathan, A.: Homogeneous bundles in characteristic. In: Proceeding Conference on Algebraic Geometry—Open Problems, Ravello, Italy, 1982. Lecture Notes on Mathematics, vol. 997, pp. 315-320 (1983) · Zbl 1302.32033
[51] Nakayama, N.: Zariski-Decomposition and Abundance. MSJ Memoirs, vol. 14. Mathematical Society of Japan, Tokyo (2004) · Zbl 1061.14018
[52] Narasimhan, M S; Seshadri, C S, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math. (2), 82, 540-567, (1965) · Zbl 0171.04803
[53] Pereira, J V; Touzet, F, Foliations with vanishing Chern classes, Bull. Braz. Math. Soc. (N.S.), 44, 731-754, (2013) · Zbl 1302.32033
[54] Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 3, Société Mathématique de France, Paris, 2003, Séminaire de géométrie algébrique du Bois Marie 1960-1961. [Algebraic Geometry Seminar of Bois Marie 1960-1961]. Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Mathematics, 224. Springer, Berlin]
[55] Shepherd-Barron, N, Semi-stability and reduction mod p, Topology, 37, 659-664, (1998) · Zbl 0926.14021
[56] Simpson, C T, Higgs bundles and local systems, Publ. Math. Inst. Hautes Étud. Sci., 75, 5-95, (1992) · Zbl 0814.32003
[57] Uhlenbeck, K; Yau, S-T, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math., 39, 257-293, (1986) · Zbl 0615.58045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.