×

Quasiconformal surgery and linear differential equations. (English) Zbl 1419.34235

Summary: We describe a new method of constructing transcendental entire functions \(A\) such that the differential equation \[w^{\prime\prime} + Aw = 0\] has two linearly independent solutions with relatively few zeros. In particular, we solve a problem of Bank and Laine by showing that there exist entire functions \(A\) of any prescribed order greater than 1/2 such that the differential equation has two linearly independent solutions whose zeros have finite exponent of convergence. We show that partial results by Bank, Laine, Langley, Rossi and Shen related to this problem are in fact best possible. We also improve a result of Toda and show that the estimate obtained is best possible. Our method is based on gluing solutions of the Schwarzian differential equation \(S(F\)) = 2\(A\) for infinitely many coefficients \(A\).

MSC:

34M03 Linear ordinary differential equations and systems in the complex domain
34M05 Entire and meromorphic solutions to ordinary differential equations in the complex domain
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] L. Ahlfors, Über eine in der neueren Wertverteilungstheorie betrachtete Klasse transzendenter Funktionen, Acta Math. 58 (1932), 375-406. · JFM 58.0371.01 · doi:10.1007/BF02547781
[2] G.A. Baker and P. Graves-Morris, Padé Approximants, Second edn., Cambridge University Press, Cambridge, 1996. · Zbl 0923.41001 · doi:10.1017/CBO9780511530074
[3] S. B. Bank and I. Laine, On the oscillation theory of f″ + Af = 0 where A is entire, Bull. Amer. Math. Soc. (N. S.) 6 (1982), 95-98. · Zbl 0484.34001 · doi:10.1090/S0273-0979-1982-14975-8
[4] S. B. Bank and I. Laine, On the oscillation theory of f″ + Af = 0 where A is entire, Trans.Amer. Math. Soc. 273 (1982), 351-363. · Zbl 0505.34026
[5] S. B. Bank and I. Laine, Representations of solutions of periodic second order linear differential equations, J. Reine Angew. Math. 344 (1983), 1-21. · Zbl 0524.34007
[6] S. B. Bank, I. Laine, and J. K. Langley, On the frequency of zeros of solutions of second order linear differential equations, Results Math. 10 (1986), 8-24. · Zbl 0635.34007 · doi:10.1007/BF03322360
[7] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N. S.) 29 (1993), 151-188. · Zbl 0791.30018 · doi:10.1090/S0273-0979-1993-00432-4
[8] W. Bergweiler and A. Eremenko, On the Bank-Laine conjecture, J. Eur. Math. Soc. (JEMS) 19 (2017), 1899-1909. · Zbl 1381.34111 · doi:10.4171/JEMS/708
[9] W. Bergweiler, P. J. Rippon and G. M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. London Math. Soc. (3) 97 (2008), 368-400. · Zbl 1174.37011 · doi:10.1112/plms/pdn007
[10] C. J. Bishop, Constructing entire functions by quasiconformal folding, Acta Math. 214 (2015), 1-60. · Zbl 1338.30016 · doi:10.1007/s11511-015-0122-0
[11] C. J. Bishop, The order conjecture fails in S, J. Anal. Math. 127 (2015), 283-302. · Zbl 1331.30016 · doi:10.1007/s11854-015-0031-3
[12] C. J. Bishop, Models for the Speiser class, Proc. London Math. Soc. (3) 114 (2017), 765-797. · Zbl 1381.30020 · doi:10.1112/plms.12025
[13] Y.-M. Chiang and M. E. H. Ismail, On value distribution theory of second order periodic ODEs, special functions and orthogonal polynomials, Canad. J. Math. 58 (2006), 726-767. · Zbl 1115.34081 · doi:10.4153/CJM-2006-030-x
[14] J. Clunie, A. Eremenko and J. Rossi, On equilibrium points of logarithmic and Newtonian potential, J. London Math. Soc. (2) 47 (1993), 309-320. · Zbl 0797.31002 · doi:10.1112/jlms/s2-47.2.309
[15] D. Drasin, The inverse problem of the Nevanlinna theory, Acta Math. 138 (1976), 83-151. · Zbl 0355.30028 · doi:10.1007/BF02392314
[16] A. Epstein and L. Rempe-Gillen, On the invariance of order for finite-type entire functions, Ann. Acad. Sci. Fenn. Math. 40 (2015), 573-599. · Zbl 1333.30040 · doi:10.5186/aasfm.2015.4034
[17] A. Eremenko, Growth of entire and subharmonic functions on asymptotic curves, Siberian Math. J. 21 (1981), 673-683; translation from Sibirsk. Mat. Zh. 21 (1980), no. 5, 39-51, 189. · Zbl 0457.30028 · doi:10.1007/BF00973881
[18] A. Eremenko and M. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier 42 (1992), 989-1020. · Zbl 0735.58031 · doi:10.5802/aif.1318
[19] A. A. Goldberg, The inverse problem of theory of the distribution of the values of meromorphic functions, Ukrain. Mat. Z. 6 (1954), 385-397.
[20] A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, American Mathematical Society, Providence, RI, 2008. · Zbl 1152.30026 · doi:10.1090/mmono/236
[21] L. R. Goldberg and L. Keen, A finiteness theorem for a dynamical class of entire functions, Ergodic Theory Dynam. Systems 6 (1986), 183-192. · Zbl 0657.58011 · doi:10.1017/S0143385700003394
[22] Gundersen, G. G., The mathematical work of Ilpo Laine (2014), Joensuu
[23] Ch. Hermite, Sur l’équation de Lamé, inOEuvres de Charles Hermite. Tome III, Gauthiers-Villars, Paris, 1912, pp. 118-122. · JFM 10.0235.02
[24] E. Hille, Oscillation theorems in the complex domain, Trans. Amer. Math. Soc. 23 (1922), 350-385. · doi:10.1090/S0002-9947-1922-1501207-8
[25] E. Hille, Ordinary Differential Equations in the Complex Domain, John Wiley & Sons, New York-London-Sydney, 1976. · Zbl 0343.34007
[26] C. Z. Huang, Some results on the complex oscillation theory of second order linear differential equations, Kodai Math. J. 14 (1991), 313-319. · Zbl 0754.34009 · doi:10.2996/kmj/1138039456
[27] Huckemann, F., Bericht Über die Theorie der Wertverteilung (1961) · Zbl 0131.07603
[28] E. L. Ince, Ordinary Differential Equations, Longmans, Green and Co., London, 1926; reprint: Dover, New York, 1956. · JFM 52.0461.03
[29] G. Julia, Exercices d’Analyse. Tome III. équations Differentielles, Gauthier-Villars, Paris, 1933. · JFM 59.0436.01
[30] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil I: Gewöhnliche Differentialgleichungen, 6. Auflage, Akademische Verlagsgesellschaft, Geest und Portig K.-G., Leipzig, 1959. · JFM 68.0179.01
[31] T. Kriecherbauer, A. B. J. Kuijlaars, K. D. T.-R. McLaughlin and P. D. Miller, Locating the zeros of partial sums of ez with Riemann-Hilbert methods, in Integrable Systems and RandomMatrices, Contemporary Mathematics, Vol. 458, American Mathematical Society, Providence, RI, 2008, pp. 183-195. · Zbl 1154.30006
[32] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter Studies in Mathematics, Vol. 15, Walter de Gruyter, Berlin-New York, 1993.
[33] I. Laine and K. Tohge, TheBank-Laine conjecture—a survey, inSome Topics on ValueDistribution and Differentiability in Complex and p-adic Analysis, Science Press, Beijing, 2008, pp. 398-417. · Zbl 1232.34116
[34] O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York-Heidelberg, 1973. · Zbl 0267.30016 · doi:10.1007/978-3-642-65513-5
[35] B. Levin, Distribution of Zeros of Entire Functions, Translations of Mathematical Monographs, Vol. 5, American Mathematical Society, Providence, RI, 1980.
[36] Nevanlinna, R., No article title, Über Riemannsche Flächen mit endlich vielen Windungspunkten, Acta Math., 58, 295-373 (1932)
[37] R. Nevanlinna, Eindeutige analytische Funktionen, Springer, Berlin-Göttingen-Heidelberg, 1953. · Zbl 0050.30302 · doi:10.1007/978-3-662-06842-7
[38] J. Rossi, Second order differential equations with transcendental coefficients, Proc. Amer. Math. Soc. 97 (1986), 61-66. · Zbl 0596.30047 · doi:10.1090/S0002-9939-1986-0831388-8
[39] H. P. de Saint-Gervais, Uniformisation des surfaces de Riemann, ENS ´ Editions, Lyon, 2010. · Zbl 1228.30001
[40] H. A. Schwarz, Gesammelte mathematische Abhandlungen,Zweiter Band, Springer, Berlin, 1890. · JFM 22.0031.04 · doi:10.1007/978-3-642-50665-9
[41] L.-C. Shen, Solution to a problem of S. Bank regarding exponent of convergence of zeros of the solutions of differential equation f–+ Af = 0, Kexue Tongbao (English Ed.) 30 (1985), 1579-1585. · Zbl 0636.34003
[42] L.-C. Shen, Proof of a conjecture of Bank and Laine regarding the product of two linearly independent solutions of y–+ Ay = 0, Proc. Amer. Math. Soc. 100 (1987), 301-308. · Zbl 0623.30036
[43] Y. Sibuya, Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient, North-Holland, Amsterdam-Oxford; American Elsevier, New York, 1975. · Zbl 0322.34006
[44] O. TeichmÜller, Einfache Beispiele zur Wertverteilungslehre, Deutsche Math. 7 (1944), 360-368; Gesammelte Abhandlungen, Springer, Berlin, 1982, S. 728-736. · Zbl 0060.22609
[45] N. Toda, A theorem on the growth of entire functions on asymptotic paths and its application to the oscillation theory of w–+ Aw = 0, Kodai Math. J. 16 (1993), 428-440. · Zbl 0797.30026 · doi:10.2996/kmj/1138039850
[46] Ullrich, E., No article title, Flächenbau undWachstumordnung bei gebrochenen Funktionen, Jber. Deutsch.Math.- Verein., 46, 232-274 (1936)
[47] G. Valiron, Lectures on the General Theory of Integral Functions, Edouard Privat, Toulouse 1923; reprint: Chelsea, New York, 1949.
[48] Volkovyskii, L. I., Investigations of the Type Problem of a Simply Connected Riemann Surface (1950) · Zbl 07273771
[49] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1920. · JFM 45.0433.02
[50] H. Wittich, Neuere Untersuchungen Über eindeutige analytische Funktionen, Springer, Berlin, 1968. · Zbl 0159.10103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.