×

Advanced computation of steady-state fluid flow in discrete fracture-matrix models: FEM-BEM and VEM-VEM fracture-block coupling. (English) Zbl 1419.65103

Summary: In this note the issue of fluid flow computation in a Discrete Fracture-Matrix (DFM) model is addressed. In such a model, a network of percolative fractures delimits porous matrix blocks. Two frameworks are proposed for the coupling between the two media. First, a FEM-BEM technique is considered, in which finite elements on non-conforming grids are used on the fractures, whereas a boundary element method is used on the blocks; the coupling is pursued by a PDE-constrained optimization formulation of the problem. Second, a VEM-VEM technique is considered, in which a 2D and a 3D virtual element method are used on the fractures and on the blocks, respectively, taking advantage of the flexibility of VEM in using arbitrary meshes in order to ease the meshing process and the consequent enforcement of the matching conditions on fractures and blocks.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N38 Boundary element methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
68U20 Simulation (MSC2010)
86-08 Computational methods for problems pertaining to geophysics
86A05 Hydrology, hydrography, oceanography
86A60 Geological problems
76S05 Flows in porous media; filtration; seepage
49K20 Optimality conditions for problems involving partial differential equations

Software:

dfnWorks
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6(3), 405-432 (2002). https://doi.org/10.1023/A:1021291114475 · Zbl 1094.76550
[2] Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376-391 (2013) · Zbl 1347.65172
[3] Ahmed, R., Edwards, M., Lamine, S., Huisman, B., Pal, M.: Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model. J. Comput. Phys. 284, 462-489 (2015). https://doi.org/10.1016/j.jcp.2014.12.047 · Zbl 1351.74073
[4] Al-Hinai, O., Srinivasan, S., Wheeler, M.F.: Domain decomposition for flow in porous media with fractures. In: SPE Reservoir Simulation Symposium 23-25 February 2013, Houston, Texas, USA, Society of Petroleum Engineers (2015). https://doi.org/10.2118/173319-MS
[5] Alboin, C., Jaffré, J., Roberts, J., Serres, C.: Domain decomposition for flow in porous media with fractures. In: Lai, C.H., Bjorstad, P.E., Cross, M., Widlund, O.B. (eds.) Proceedings of the 11th International Conference on Domain Decomposition Methods in Greenwich, pp. 371-379 (1999) · Zbl 1102.76331
[6] Aldejain, A.: Implementation of dual porosity model in a chemical flooding simulator. Ph.D. thesis, The University of Texas at Austin, Texas (1999)
[7] Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43(2), 239-275 (2009). https://doi.org/10.1051/m2an/2008052 · Zbl 1171.76055
[8] Antonietti, P., Formaggia, L., Scotti, A., Verani, M., Verzott, N.: Mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 50(3), 809-832 (2016). https://doi.org/10.1051/m2an/2015087 · Zbl 1381.76231
[9] Bai, M., Ma, Q., Roegiers, J.: A nonlinear dual-porosity model. Appl. Math. Model. 18(11), 602-610 (1994). https://doi.org/10.1016/0307-904X(94)90318-2 · Zbl 0817.76087
[10] Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199-214 (2013a). https://doi.org/10.1142/S0218202512500492 · Zbl 1416.65433
[11] Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794-812 (2013b). https://doi.org/10.1137/120874746 · Zbl 1268.74010
[12] Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(8), 1541-1573 (2014) · Zbl 1291.65336
[13] Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems, Modeling, Simulation and Applications, vol 11. Springer, Berlin (2014). · Zbl 1286.65141
[14] Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element methods for general second order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(04), 729-750 (2015). https://doi.org/10.1142/S0218202516500160 · Zbl 1332.65162
[15] Benedetto, M., Berrone, S., Pieraccini, S., Scialò, S.: The virtual element method for discrete fracture network simulations. Comput. Methods Appl. Mech. Eng. 280, 135-156 (2014). https://doi.org/10.1016/j.cma.2014.07.016 · Zbl 1423.74863
[16] Benedetto, M., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306, 148-166 (2016a). https://doi.org/10.1016/j.jcp.2015.11.034 · Zbl 1351.76048
[17] Benedetto, M., Berrone, S., Scialò, S.: A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elem. Anal. Des. 109, 23-36 (2016b). https://doi.org/10.1016/j.finel.2015.10.003
[18] Benedetto, MF; Berrone, S.; Borio, A., The Virtual Element Method for underground flow simulations in fractured media, No. 12, 167-186 (2016), Basel · Zbl 1371.74214
[19] Berrone, S., Borio, A.: Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method. Finite Elements Anal. Des. 129, 14-31 (2017a). https://doi.org/10.1016/j.finel.2017.01.006
[20] Berrone, S., Borio, A.: A residual a posteriori error estimate for the virtual element method. Math. Models Methods Appl. Sci. 27(08), 1423-1458 (2017b). https://doi.org/10.1142/S0218202517500233 · Zbl 1376.65136
[21] Berrone, S., Pieraccini, S., Scialò, S.: On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35(2), A908-A935 (2013a). https://doi.org/10.1137/120882883 · Zbl 1266.65187
[22] Berrone, S., Pieraccini, S., Scialò, S.: A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35(2), B487-B510 (2013b). https://doi.org/10.1137/120865884 · Zbl 1266.65188
[23] Berrone, S., Fidelibus, C., Pieraccini, S., Scialò, S.: Simulation of the steady-state flow in discrete fracture networks with non-conforming meshes and extended finite elements. Rock Mech. Rock Eng. 47(6), 2171-2182 (2014a). https://doi.org/10.1007/s00603-013-0513-5
[24] Berrone, S., Pieraccini, S., Scialò, S.: An optimization approach for large scale simulations of discrete fracture network flows. J. Comput. Phys. 256, 838-853 (2014b). https://doi.org/10.1016/j.jcp.2013.09.028 · Zbl 1349.76806
[25] Berrone, S., Pieraccini, S., Scialò, S., Vicini, F.: A parallel solver for large scale DFN flow simulations. SIAM J. Sci. Comput. 37(3), C285-C306 (2015). https://doi.org/10.1137/140984014 · Zbl 1320.65167
[26] Berrone, S., Borio, A., Scialò, S.: A posteriori error estimate for a PDE-constrained optimization formulation for the flow in DFNs. SIAM J. Numer. Anal. 54(1), 242-261 (2016a). https://doi.org/10.1137/15M1014760 · Zbl 1382.76159
[27] Berrone, S., Pieraccini, S., Scialò, S.: Towards effective flow simulations in realistic discrete fracture networks. J. Comput. Phys. 310, 181-201 (2016b). https://doi.org/10.1016/j.jcp.2016.01.009 · Zbl 1349.76179
[28] Berrone, S., Pieraccini, S., Scialò, S.: Flow simulations in porous media with immersed intersecting fractures. J. Comput. Phys. 345, 768-791 (2017). https://doi.org/10.1016/j.jcp.2017.05.049 · Zbl 1378.76107
[29] Brebbia, C., Telles, J., Wrobel, L.: Boundary Element Techniques, Theory and Apllications in Engineering. Springer, Berlin (1984) · Zbl 0556.73086
[30] Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.: Gradient discretization of hybrid dimensional darcy flows in fractured porous media. Numerische Mathematik 134(3), 569-609 (2016a). https://doi.org/10.1007/s00211-015-0782-x · Zbl 1358.76069
[31] Brenner, K., Hennicker, J., Masson, R., Samier, P.: Gradient discretization of hybrid-dimensional darcy flow in fractured porous media with discontinuous pressures at matrix-fracture interfaces. IMA J. Numer. Anal. (2016b). https://doi.org/10.1093/imanum/drw044 · Zbl 1433.76101
[32] Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227-1240 (2014). https://doi.org/10.1051/m2an/2013138 · Zbl 1299.76130
[33] Chave, F., Di Pietro, D., Formaggia, L.: A hybrid high-order method for darcy flows in fractured porous media. SIAM J. Sci. Comput. 40(2), A1063-A1094 (2018). https://doi.org/10.1137/17M1119500 · Zbl 1448.65196
[34] D’Angelo, C., Scotti, A.: A mixed finite element method for darcy flow in fractured porous media with non-matching grids. ESAIM: M2AN 46(2), 465-489 (2012). https://doi.org/10.1051/m2an/2011148 · Zbl 1271.76322
[35] Faille, I., Fumagalli, A., Jaffré, J., Roberts, J.E.: Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults. Comput. Geosci. 20(2), 317-339 (2016). https://doi.org/10.1007/s10596-016-9558-3 · Zbl 1391.76719
[36] Fidelibus, C., Barla, G., Cravero, M.: A mixed solution for two-dimensional unsteady flow in fractured porous media. Int. J. Numer. Anal. Methods Geomech. 21(9), 619-633 (1997)
[37] Flemisch, B., Berre, I., Boon, W., Fumagalli, A., Schwenck, N., Scotti, A., Stefansson, I., Tatomir, A.: Benchmarks for single-phase flow in fractured porous media. Adv. Water Resour. 111, 239-258 (2018). https://doi.org/10.1016/j.advwatres.2017.10.036
[38] Formaggia, L., Scotti, A., Sottocasa, F.: Analysis of a Mimetic Finite Difference approximation of flows in fractured media. Technical Report 49/2016, MOX, Mathematical Department, Politecnico di Milano (2016) · Zbl 1404.65228
[39] Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253-304 (2010). https://doi.org/10.1002/nme.2914 · Zbl 1202.74169
[40] Frih, N., Martin, V., Roberts, J.E., Saâda, A.: Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1043-1060 (2012). https://doi.org/10.1007/s10596-012-9302-6
[41] Fumagalli, A., Keilegavlen, E.: Dual virtual element method for discrete fractures networks. SIAM J. Sci. Comput. 40, B228-B258 (2018). https://doi.org/10.1137/16M1098231 · Zbl 1380.76140
[42] Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Resour. 62, 454-464 (2013). https://doi.org/10.1016/j.advwatres.2013.04.001 · Zbl 1273.76398
[43] Fumagalli, A., Keilegavlen, E., Scialò, S. (2018) Conforming, non-conforming and non-matching discretization couplings in discrete fracture network simulations. arXiv:1803.01732 · Zbl 1416.76306
[44] Hajibeygi, H., Karvounis, D., Jenny, P.: A hierarchical fracture model for the iterative multiscale finite volume method. J. Comput. Phys. 230(24), 8729-8743 (2011). https://doi.org/10.1016/j.jcp.2011.08.021 · Zbl 1370.76095
[45] Huyakorn, P., Pinder, G.: The Computational Methods in Subsurface Flow. Academic Press, Cambridge (1983). doi: 10.1016/B978-0-12-363480-1.50001-4. · Zbl 0577.76001
[46] Hyman, J.D., Karra, S., Makedonska, N., Gable, C.W., Painter, S.L., Viswanathan, H.S.: dfnworks: a discrete fracture network framework for modeling subsurface flow and transport. Comput. Geosci. 84, 10-19 (2015). https://doi.org/10.1016/j.cageo.2015.08.001
[47] Kazemi, H.; Gilman, J.; Bear, J. (ed.); Tsang, C. (ed.); Marsily, G. (ed.), Multiphase flow in fractured petroleum reservoirs, 267-323 (1993), San Diego
[48] Makedonska, N., Painter, S.L., Bui, Q.M., Gable, C.W., Karra, S.: Particle tracking approach for transport in three-dimensional discrete fracture networks. Comput. Geosci. 19(5), 1123-1137 (2015). https://doi.org/10.1007/s10596-015-9525-4 · Zbl 1391.76735
[49] Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667-1691 (2005). https://doi.org/10.1137/S1064827503429363 · Zbl 1083.76058
[50] Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Resour. 29(7), 1020-1036 (2006). https://doi.org/10.1016/j.advwatres.2005.09.001
[51] Sandve, T., Berre, I., Nordbotten, J.: An efficient multi-point flux approximation method for discrete fracture-matrix simulations. J. Comput. Phys. 231(9), 3784-3800 (2012). https://doi.org/10.1016/j.jcp.2012.01.023 · Zbl 1402.76131
[52] Shapiro, A.M., Andersson, J.: Steady state fluid response in fractured rock: a boundary element solution for a coupled, discrete fracture continuum model. Water Resour. Res. 19(4), 959-969 (1983). https://doi.org/10.1029/WR019i004p00959
[53] Warren, M.A., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petrol. Eng. J. 3(3), 245-279 (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.