×

What is the final size of turbulent mixing zones driven by the Faraday instability? (English) Zbl 1419.76281

Summary: Miscible fluids of different densities subjected to strong time-periodic accelerations normal to their interface can mix due to Faraday instability effects. Turbulent fluctuations generated by this mechanism lead to the emergence and the growth of a mixing layer. Its enlargement is gradually slowed down as the resonance conditions driving the instability cease to be fulfilled. The final state corresponds to a saturated mixing zone in which the turbulence intensity progressively decays. A new formalism based on second-order correlation spectra for the turbulent quantities is introduced for this problem. This method allows for the prediction of the final mixing zone size and extends results from classical stability analysis limited to weakly nonlinear regimes. We perform at various forcing frequencies and amplitudes a large set of homogeneous and inhomogeneous numerical simulations, extensively exploring the influence of initial conditions. The mixing zone widths, measured at the end of the simulations, are satisfactorily compared to the predictions, and bring a strong support to the proposed theory. The flow dynamics is also studied and reveals the presence of sub-harmonic as well as harmonic modes depending on the initial parameters in the Mathieu phase diagram. Important changes in the flow anisotropy, corresponding to the large scale structures of turbulence, occur. This phenomenon appears directly related to the orientation of the most amplified gravity waves excited in the system, evolving due to the enlargement of the mixing zone.

MSC:

76F25 Turbulent transport, mixing
76F45 Stratification effects in turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amiroudine, S.; Zoueshtiagh, F.; Narayanan, R., Mixing generated by Faraday instability between miscible liquids, Phys. Rev. E, 85, (2012)
[2] Andrews, M. J.; Spalding, D. B., A simple experiment to investigate two-dimensional mixing by Rayleigh-Taylor instability, Phys. Fluids A, 2, 6, 922-927, (1990) · doi:10.1063/1.857652
[3] Arbell, H.; Fineberg, J., Pattern formation in two-frequency forced parametric waves, Phys. Rev. E, 65, (2002)
[4] Batchelor, G. K.; Canuto, V. M.; Chasnov, J. R., Homogeneous buoyancy-generated turbulence, J. Fluid Mech., 235, 349-378, (1992) · Zbl 0743.76040 · doi:10.1017/S0022112092001149
[5] Batchelor, G. K.; Nitsche, J. M., Instability of stationary unbounded stratified fluid, J. Fluid Mech., 227, 357-391, (1991) · Zbl 0850.76205 · doi:10.1017/S0022112091000150
[6] Bender, C. M. & Orszag, S. A.1978Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, reprinted by Springer (1999). · Zbl 0417.34001
[7] Benielli, D.; Sommeria, J., Excitation and breaking of internal gravity waves by parametric instability, J. Fluid Mech., 374, 117-144, (1998) · Zbl 0941.76514 · doi:10.1017/S0022112098002602
[8] Benjamin, T. B.; Ursell, F., The stability of the plane free surface of a liquid in vertical periodic motion, Proc. R. Soc. Lond. A, 225, 1163, 505-515, (1954) · Zbl 0057.18801 · doi:10.1098/rspa.1954.0218
[9] Binks, D.; Van De Water, W., Nonlinear pattern formation of Faraday waves, Phys. Rev. Lett., 78, 4043-4046, (1997) · doi:10.1103/PhysRevLett.78.4043
[10] Bosch, E.; Van De Water, W., Spatiotemporal intermittency in the Faraday experiment, Phys. Rev. Lett., 70, 3420-3423, (1993) · doi:10.1103/PhysRevLett.70.3420
[11] Burlot, A.; Gréa, B.-J.; Godeferd, F. S.; Cambon, C.; Griffond, J., Spectral modelling of high Reynolds number unstably stratified homogeneous turbulence, J. Fluid Mech., 765, 17-44, (2015) · Zbl 1328.76034 · doi:10.1017/jfm.2014.726
[12] Chen, P.; Viñals, J., Amplitude equation and pattern selection in Faraday waves, Phys. Rev. E, 60, 559-570, (1999)
[13] Chung, D.; Pullin, D. I., Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence, J. Fluid Mech., 643, 279-308, (2010) · Zbl 1189.76309 · doi:10.1017/S0022112009992801
[14] Cook, A. W.; Dimotakis, P. E., Transition stages of Rayleigh-Taylor instability between miscible fluids, J. Fluid Mech., 443, 69-99, (2001) · Zbl 1015.76037 · doi:10.1017/S0022112001005377
[15] Dimonte, G.; Youngs, D. L.; Dimits, A.; Weber, S.; Marinak, M.; Wunsch, S.; Garasi, C.; Robinson, A.; Andrews, M. J.; Ramaprabhu, P., A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration, Phys. Fluids, 16, 5, 1668-1693, (2004) · Zbl 1186.76143 · doi:10.1063/1.1688328
[16] Diwakar, S. V.; Zoueshtiagh, F.; Amiroudine, S.; Narayanan, R., The Faraday instability in miscible fluid systems, Phys. Fluids, 27, 8, (2015) · doi:10.1063/1.4929401
[17] Edwards, W. S.; Fauve, S., Patterns and quasi-patterns in the Faraday experiment, J. Fluid Mech., 278, 123-148, (1994) · doi:10.1017/S0022112094003642
[18] Falcón, C.; Fauve, S., Wave – vortex interaction, Phys. Rev. E, 80, (2009)
[19] Faraday, M., On the forms and states of fluids on vibrating elastic surfaces, Phil. Trans. R. Soc. Lond., 121, 319-340, (1831) · doi:10.1098/rstl.1831.0018
[20] Gaponenko, Y. A.; Torregrosa, M.; Yasnou, V.; Mialdun, A.; Shevtsova, V., Dynamics of the interface between miscible liquids subjected to horizontal vibration, J. Fluid Mech., 784, 342-372, (2015) · doi:10.1017/jfm.2015.586
[21] Godrèche, C. & Manneville, P.(Eds) 2005Hydrodynamics and Nonlinear Instabilities. Cambridge University Press.
[22] Gollub, J. P. & Ramshankar, R.1991Spatiotemporal Chaos in Interfacial Waves, pp. 165-194. Springer.
[23] Gréa, B.-J., The rapid acceleration model and the growth rate of a turbulent mixing zone induced by Rayleigh-Taylor instability, Phys. Fluids, 25, 1, 015118, (2013) · doi:10.1063/1.4775379
[24] Griffond, J.; Gréa, B.-J.; Soulard, O., Unstably stratified homogeneous turbulence as a tool for turbulent mixing modeling, Trans. ASME J. Fluids Engng, 136, (2014) · doi:10.1115/1.4025675
[25] Hanazaki, H.; Hunt, J. C. R., Linear processes in unsteady stably stratified turbulence, J. Fluid Mech., 318, 303-337, (1996) · Zbl 0894.76029 · doi:10.1017/S0022112096007136
[26] Hunt, J. C. R.; Carruthers, D. J., Rapid distortion theory and the problems of turbulence, J. Fluid Mech., 212, 497-532, (1990) · Zbl 0692.76054 · doi:10.1017/S0022112090002075
[27] Jacobs, J. W.; Krivets, V. V.; Tsiklashvili, V.; Likhachev, O. A., Experiments on the Richtmyer-Meshkov instability with an imposed, random initial perturbation, Shock Waves, 23, 407-413, (2013) · doi:10.1007/s00193-013-0436-9
[28] Kudrolli, A.; Gollub, J. P., Patterns and spatiotemporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio, Physica D, 97, 1, 133-154, (1996) · doi:10.1016/0167-2789(96)00099-1
[29] Kumar, K.; Tuckerman, L. S., Parametric instability of the interface between two fluids, J. Fluid Mech., 279, 49-68, (1994) · Zbl 0823.76026 · doi:10.1017/S0022112094003812
[30] Livescu, D.; Ristorcelli, J. R., Buoyancy-driven variable-density turbulence, J. Fluid Mech., 591, 43-71, (2007) · Zbl 1125.76353 · doi:10.1017/S0022112007008270
[31] Miles, J.; Henderson, D., Parametrically forced surface waves, Annu. Rev. Fluid Mech., 22, 1, 143-165, (1990) · Zbl 0723.76004 · doi:10.1146/annurev.fl.22.010190.001043
[32] Morgan, B. E.; Olson, B. J.; White, J. E.; Mcfarland, J. A., Self-similarity of a Rayleigh-Taylor mixing layer at low Atwood number with a multimode initial perturbation, J. Turbul., 18, 10, 973-999, (2017) · doi:10.1080/14685248.2017.1343477
[33] Müller, H. W., Model equations for two-dimensional quasipatterns, Phys. Rev. E, 49, 1273-1277, (1994)
[34] Nazarenko, S.; Kevlahan, N. K.-R.; Dubrulle, B., WKB theory for rapid distortion of inhomogeneous turbulence, J. Fluid Mech., 390, 325-348, (1999) · Zbl 0967.76045 · doi:10.1017/S0022112099005340
[35] Poujade, O.; Peybernes, M., Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach, Phys. Rev. E, 81, 016316, (2010)
[36] Simonelli, F.; Gollub, J. P., Surface wave mode interactions: effects of symmetry and degeneracy, J. Fluid Mech., 199, 471-494, (1989) · doi:10.1017/S0022112089000443
[37] Skeldon, A. C.; Guidoboni, G., Pattern selection for Faraday waves in an incompressible viscous fluids, SIAM J. Appl. Maths, 67, 1064-1100, (2007) · Zbl 1146.76011 · doi:10.1137/050639223
[38] Skeldon, A. C.; Rucklidge, A. M., Can weakly nonlinear theory explain Faraday wave patterns near onset?, J. Fluid Mech., 777, 604-632, (2015) · doi:10.1017/jfm.2015.388
[39] Soulard, O.; Griffond, J.; Gréa, B.-J., Large-scale analysis of unconfined self-similar Rayleigh-Taylor turbulence, Phys. Fluids, 27, 9, (2015) · doi:10.1063/1.4930003
[40] Thornber, B., Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer-Meshkov instability, Phys. Fluids, 28, 4, (2016) · doi:10.1063/1.4944877
[41] Watteaux, R.2011 Détection des grandes structures turbulentes dans les couches de mélange de type Rayleigh-Taylor en vue de la validation de modèles statistiques turbulents bi-structure. PhD thesis, ENS Cachan.
[42] Zhang, W.; Viñals, J., Pattern formation in weakly damped parametric surface waves driven by two frequency components, J. Fluid Mech., 341, 225-244, (1997) · Zbl 0896.76013 · doi:10.1017/S0022112097005387
[43] Zoueshtiagh, F.; Amiroudine, S.; Narayanan, R., Experimental and numerical study of miscible Faraday instability, J. Fluid Mech., 628, 43-55, (2009) · Zbl 1181.76017 · doi:10.1017/S0022112009006156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.