×

zbMATH — the first resource for mathematics

Hypersonic flow over spherically blunted cone capsules for atmospheric entry. I: The sharp cone and the sphere. (English) Zbl 1419.76418
Summary: Depending on the cone half-angle and the inverse normal-shock density ratio \(\varepsilon\), hypersonic flow over a spherically blunted cone exhibits two regimes separated by an almost discontinuous jump of the body end of the sonic line from a point on the spherical nose to the shoulder of the cone, here called sphere behaviour and cone behaviour. The inflection point of the shock wave in sphere behaviour is explained. In Part 1 we explore the two elements of the capsule shape, the sphere and the sharp cone with detached shock, theoretically and computationally, in order to put the treatment of the full capsule shape on a sound basis. Starting from the analytical expression for the shock detachment angle of a cone given by W. D. Hayes and R. F. Probstein [Hypersonic Flow Theory. New York-London: Academic Press (1959; Zbl 0084.42202)] we make a hypothesis for the sharp cone, about the functional form of the dependence of dimensionless quantities on \(\varepsilon\) and a cone angle parameter, \(\eta\). In the critical part of atmospheric entry the shock shape and drag of the capsule are insensitive to viscous effects, so that much can be learned from inviscid studies. Accordingly, the hypothesis is tested by making a large number of Euler computations to cover the parameter space: Mach number, specific heat ratio and cone angle. The results confirm the hypothesis in the case of the dimensionless shock stand-off distance as well as for the drag coefficient, yielding accurate analytical functions for both. This reduces the number of independent parameters of the problem from three to two. A functional form of the shock stand-off distance is found for the transition from the \(90^\circ\) cone to the sphere. Although the analysis assumes a calorically perfect gas, the results may be carried over to the high-enthalpy real-gas situation if the normal-shock density ratio is replaced by the density ratio based on the average density along the stagnation streamline (see e.g. V. P. Stulov [“Similarity law for supersonic flow past blunt bodies”, Fluid Dyn. 4, No. 4, 93–96 (1969; doi:10.1007/BF01094695)], the first author [J. Fluid Mech. 53, 149–176 (1972; Zbl 0235.76035)], C. Y. Wen and the first author [ibid. 299, 389–405 (1995; Zbl 0849.76098)]).

MSC:
76K05 Hypersonic flows
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)
Software:
HLLE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Braun, R. D.; Powell, R. W.; Cruz, C. I.; Gnoffo, P. A.; Weilmuenster, K. J., Mars Pathfinder six-degree-of-freedom entry analysis, J. Spacecr. Rockets, 36, 993-1000, (1995)
[2] Desai, P. N.; Cheatwood, F. M., Entry dispersion analysis for the genesis sample return capsule, J. Spacecr. Rockets, 38, 345-350, (2001)
[3] Dyakonov, A. A.; Schoeneberger, M.; Norman, J. W., Hypersonic and supersonic static aerodynamics of Mars Science Laboratory entry vehicle, 43rd AIAA Thermophysics Conference, New Orleans, LA. AIAA Paper 2012-2999, (2012)
[4] Edquist, K., Computations of Viking Lander capsule hypersonic aerodynamics with comparisons to ground and flight data, AIAA Atmospheric Flight Mechanics Conference and Exhibit, Guidance, Navigation, and Control, Keystone, Colorado. AIAA Paper 2006-6137, (2006)
[5] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal., 25, 294-318, (1988) · Zbl 0642.76088
[6] Freeman, N. C., On a singular point in the Newtonian theory of hypersonic flow, J. Fluid Mech., 8, 109-122, (1960) · Zbl 0092.43102
[7] Gnoffo, P. A.; Braun, R. D.; Weilmuenster, K. J.; Mitcheltree, R. A.; Engelund, W. C.; Powell, R. W., Prediction and validation of Mars Pathfinder hypersonic aerodynamic database, J. Spacecr. Rockets, 36, 367-373, (1999)
[8] Gnoffo, P. A.; Weilmuenster, K. J.; Braun, R. D.; Cruz, C. I., Influence of sonic line location on Mars Pathfinder Probe aerodynamics, J. Spacecr. Rockets, 33, 169-177, (1996)
[9] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35-61, (1983) · Zbl 0565.65051
[10] Hayes, W. D.; Probstein, R. F., Hypersonic Flow Theory, (1959), Academic Press
[11] Holden, M. S.; Wadhams, T. P.; MacLean, M.; Mundy, E., Experimental studies in LENS I and X to evaluate real gas effects on hypervelocity vehicle performance, 45th AIAA Aerospace Sciences Meeting and Exhibit. AIAA Paper 2007-204, (2007)
[12] Hornung, H. G., Some aspects of hypersonic flow over power-law bodies, J. Fluid Mech., 39, 143-162, (1969) · Zbl 0187.50004
[13] Hornung, H. G., Non-equilibrium flow of nitrogen over spheres and circular cylinders, J. Fluid Mech., 53, 149-176, (1972) · Zbl 0235.76035
[14] Ishii, N.; Yamada, T.; Hiraki, K.; Inatanii, Y., Reentry motion and aerodynamics of the MUSES-C sample return capsule, Trans. Japan Soc. Aero. Space Sci., 51, 65-70, (2008)
[15] Krasil’nikov, A. V.; Nikulin, A. N.; Kholodov, A. S., Some features of flow over spherically blunted cones of large vertex angles, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 2, 179-181, (1975)
[16] Krasnov, N. F., Aerodynamics of Bodies of Revolution, (1970), Rand Corporation
[17] Leibowitz, M. G.; Austin, J. M., Hypervelocity spherically-blunted cone flows in Mars entry ground testing, AIAA J., (2019)
[18] Mitcheltree, R. A.; Wilmoth, R. G.; Cheatwood, F. M.; Brauckmann, G. J.; Greene, F. A., Aerodynamics of Stardust sample return capsule, AIAA Conference. AIAA Paper 97-2304, (1997)
[19] Perminov, V. G., The Difficult Road to Mars - A Brief History of Mars Exploration in the Soviet Union, Monographs in Aerospace History, No. 15, (1999), NASA
[20] Powell, R. W.; Justus, C. G.; Bose, D.; Chen, Y. K.; Cruz, J. R.; Duvall, A.; Fisher, J.; Hollis, B.; Lockwood, M. K.; Keller, V.
[21] Pullin, D. I., Direct simulation methods for compressible inviscid ideal-gas flows, J. Comput. Phys., 34, 231-240, (1980) · Zbl 0419.76049
[22] Quirk, J. J., A contribution to the great Riemann solver debate, Intl J. Numer. Meth. Fluids, 18, 555-574, (1994) · Zbl 0794.76061
[23] Quirk, J. J., Amrita - a computational facility (for CFD modelling), VKI CFD, 29, (1998), Von Karman Institute
[24] Quirk, J. J.; Karni, S., On the dynamics of a shock bubble interaction, J. Fluid Mech., 318, 129-163, (1996) · Zbl 0877.76046
[25] Schoeneberger, M.; Cheatwood, F. M.; Desai, P. W., Static aerodynamics of the Mars Exploration Rover entry capsule, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV. AIAA Paper 2005-0056, (2005)
[26] Sharma, M.; Swantek, A. B.; Flaherty, W.; Austin, J. M., Experimental and numerical investigation of hypervelocity flow over blunt bodies, J. Thermophys. Heat Transfer, 24, 673-683, (2010)
[27] Solomon, G. E.
[28] South, J. C. Jr.
[29] Spencer, D. A.; Thurman, S. W.; Peng, C.-Y.; Blanchard, R. C.; Braun, R. D.
[30] Stulov, V. P., Similarity law for supersonic flow past blunt bodies, Izv. AN SSSR Mech. Zhidk. Gaza, 4, 142-146, (1969)
[31] Taylor, G. I.; Maccoll, J. W., The air pressure on a cone moving at high speed, Proc. R. Soc. Lond. A, 139, 278-311, (1933) · JFM 59.0773.03
[32] Tran, P.; Beck, J.
[33] Traugott, S. C., Some features of supersonic and hypersonic flow about blunted cones, J. Aero. Sci., 29, 389-399, (1962) · Zbl 0112.18703
[34] Wen, C.-Y.; Hornung, H. G., Non-equilibrium dissociating flow over spheres, J. Fluid Mech., 299, 389-405, (1995) · Zbl 0849.76098
[35] Wright, M. J.; Olejniczak, J.; Brown, J. L.; Hornung, H. G.; Edquist, K. T.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.