zbMATH — the first resource for mathematics

A low-Mach number fix for Roe’s approximate Riemann solver. (English) Zbl 1419.76461
Summary: We present a low-Mach number fix for Roe’s approximate Riemann solver (LMRoe). As the Mach number Ma tends to zero, solutions to the Euler equations converge to solutions of the incompressible equations. Yet, standard upwind schemes do not reproduce this convergence: the artificial viscosity grows like 1/Ma, leading to a loss of accuracy as Ma \(\rightarrow 0\). With a discrete asymptotic analysis of the Roe scheme we identify the responsible term: the jump in the normal velocity component \(\Delta U\) of the Riemann problem. The remedy consists of reducing this term by one order of magnitude in terms of the Mach number. This is achieved by simply multiplying \(\Delta U\) with the local Mach number. With an asymptotic analysis it is shown that all discrepancies between continuous and discrete asymptotics disappear, while, at the same time, checkerboard modes are suppressed. Low Mach number test cases show, first, that the accuracy of LMRoe is independent of the Mach number, second, that the solution converges to the incompressible limit for Ma \(\rightarrow 0\) on a fixed mesh and, finally, that the new scheme does not produce pressure checkerboard modes. High speed test cases demonstrate the fall back of the new scheme to the classical Roe scheme at moderate and high Mach numbers.

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
Full Text: DOI
[1] Sesterhenn, J.; Müller, B.; Thomann, H., On the cancellation problem in calculating compressible low Mach number flows, J. comput. phys., 151, 2, 597-615, (1999) · Zbl 0945.76054
[2] LeVeque, R.J., Finite volume methods for hyperbolic problems, Cambridge texts in applied mathematics, (2002), Cambridge University Press Cambridge
[3] Turkel, E., Preconditioned methods for solving the incompressible and low speed compressible equations, J. comput. phys., 72, 277-298, (1987) · Zbl 0633.76069
[4] Turkel, E.; Fiterman, A.; van Leer, B., Preconditioning and the limit of the compressible to the incompressible flow equations for finite difference schemes, (), 215-234
[5] van Leer, B.; Lee, W.-T.; Roe, P., Characteristic time-stepping or local preconditioning of the Euler equations, AIAA paper, 91-1552, (1991)
[6] Choi, Y.-H.; Merkle, C., The application of preconditioning in viscous flows, J. comput. phys., 105, 2, 207-223, (1993) · Zbl 0768.76032
[7] Guillard, H.; Viozat, C., On the behaviour of upwind schemes in the low Mach number limit, Comput. fluids, 28, 1, 63-86, (1999) · Zbl 0963.76062
[8] Li, X.-S.; Gu, C.-W., An all-speed roe-type scheme its asymptotic analysis of low Mach number behaviour., J. comput. phys., 227, 10, 5144-5159, (2008) · Zbl 1388.76207
[9] Birken, P.; Meister, A., Stability of preconditioned finite volume schemes at low Mach numbers, Bit, 45, 3, 463-480, (2005) · Zbl 1124.76038
[10] Dellacherie, S., Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number, J. comput. phys., 229, 4, 978-1016, (2010) · Zbl 1329.76228
[11] Feistauer, M.; Kučera, V., On a robust discontinuous Galerkin technique for the solution of compressible flow, J. comput. phys., 224, 1, 208-221, (2007) · Zbl 1114.76042
[12] Bassi, F.; De Bartolo, C.; Hartmann, R.; Nigro, A., A discontinuous Galerkin method for inviscid low Mach number flows, J. comput. phys., 228, 11, 3996-4011, (2009) · Zbl 1273.76265
[13] Thornber, B.; Drikakis, D.; Williams, R.; Youngs, D., On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes, J. comput. phys., 227, 10, 4853-4872, (2008) · Zbl 1142.65073
[14] Thornber, B.; Mosedale, A.; Drikakis, D.; Youngs, D.; Williams, R., An improved reconstruction method for compressible flows with low Mach number features, J. comput. phys., 227, 10, 4873-4894, (2008) · Zbl 1388.76188
[15] C. Viozat, Implicit Upwind Schemes for Low Mach Number Compressible Flows, Technical report, Institut National de Recherche en Informatique et en Automatique (INRIA), 1997.
[16] Rhie, C.; Chow, W., Numerical study of the turbulent flow past an airfoil with trailing edge separation, Aiaa j., 21, 1525-1532, (1983) · Zbl 0528.76044
[17] Rieper, F.; Bader, G., The influence of cell geometry on the accuracy of upwind schemes in the low Mach number regime, J. comput. phys., 228, 8, 2918-2933, (2009) · Zbl 1159.76027
[18] Guillard, H., On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells, Comput. fluids, 38, 10, 1969-1972, (2009) · Zbl 1242.76165
[19] Guillard, H.; Murrone, A., On the behavior of upwind schemes in the low Mach number limit. II: Godunov type schemes, Comput. fluids, 33, 4, 655-675, (2004) · Zbl 1049.76040
[20] Dellacherie, S.; Omnes, P.; Rieper, F., The influence of cell geometry on the Godunov scheme applied to the linear wave equation, J. comput. phys., 229, 14, 5315-5338, (2010) · Zbl 1206.65208
[21] Tapp, M.; White, P.W., A non-hydrostatic mesoscale model, Quart. J. roy. meteor. soc., 102, 432, 277-296, (1976)
[22] Durran, D.R., Numerical methods for wave equations in geophysical fluid dynamics, Texts in applied mathematics, 32, (1998), Springer New York, NY · Zbl 0918.76001
[23] F. Fillion, A. Chanoine, S. Dellacherie, A. Kumbaro, FLICA-OVAP: a new platform for core thermal-hydraulic studies, in: 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13), 2009.
[24] A. Meister, Analyse und Anwendung Asymptotik-basierter numerischer Verfahren zur Simulation reibungsbehafteter Strömungen in allen Mach-Zahlbereichen, Habilitationsschrift, Universität Hamburg, 2001.
[25] Klein, R., Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I: one-dimensional flow, J. comput. phys., 121, 2, 213-237, (1995) · Zbl 0842.76053
[26] Klainerman, S.; Majda, A., Compressible and incompressible fluids, Commun. pure appl. math., 35, 629-651, (1982) · Zbl 0478.76091
[27] S. Dellacherie, Checkerboard modes and wave equation, in: Proceedings of ALGORITMY 2009, 2009, pp. 71-80. · Zbl 1173.76027
[28] Gresho, P.M.; Chan, S.T., On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. II: implementation, Int. J. numer. methods fluids, 11, 5, 621-659, (1990) · Zbl 0712.76036
[29] Gresho, P.M., On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. I: theory, Int. J. numer. methods fluids, 11, 5, 587-620, (1990) · Zbl 0712.76035
[30] Rieper, F., On the dissipation mechanism of upwind-schemes in the low Mach number regime: a comparison between roe and HLL, J. comput. phys., 229, 2, 221-232, (2010) · Zbl 1375.76115
[31] Laney, C.B., Computational gasdynamics, (1998), Cambridge University Press Cambridge · Zbl 0947.76001
[32] Sod, G.A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. comput. phys., 27, 1-31, (1978) · Zbl 0387.76063
[33] Lax, P.D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. pure appl. math., 7, 159-193, (1954) · Zbl 0055.19404
[34] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, A practical introduction, (1999), Springer Berlin · Zbl 0923.76004
[35] Einfeldt, B., Ein schneller algorithmus zur Lösung des Riemann-problems. (an efficient algorithm for the solution to the Riemann problem), Computing, 39, 77-86, (1987) · Zbl 0632.65096
[36] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (), 325-432 · Zbl 0927.65111
[37] S. Vater, Private communication, FU Berlin, 2010.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.