Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions. (English) Zbl 1421.35068

Summary: In the present paper, we consider the following singularly perturbed problem: \[\begin{cases} -\varepsilon^2\Delta u+V(x)u=\varepsilon^{-\alpha}(I_{\alpha}*F(u))f(u),\quad x\in \mathbb{R}^N, \\ u\in H^1(\mathbb{R}^N), \end{cases} \] where \(\varepsilon > 0\) is a parameter, \(N \geq 3\), \(\alpha \in (0, N)\), \(F(t) = \int_{0}^{t} f(s)\mathrm{d}(s)\) and \(I_{\alpha}: \mathbb{R}^{N} \rightarrow \mathbb{R}\) is the Riesz potential. By introducing some new tricks, we prove that the above problem admits a semiclassical ground state solution \((\varepsilon \in (0, \varepsilon_{0}))\) and a ground state solution \((\varepsilon = 1)\) under the general “Berestycki-Lions assumptions” on the nonlinearity \(f\) which are almost necessary, as well as some weak assumptions on the potential \(V\). When \(\varepsilon = 1\), our results generalize and improve the ones in [V. Moroz and J. van Schaftingen, Trans. Am. Math. Soc. 367, No. 9, 6557–6579 (2015; Zbl 1325.35052)] and [H. Berestycki and P.-L. Lions, Arch. Ration. Mech. Anal. 82, 313–345 (1983; Zbl 0533.35029)] and some other related literature. In particular, we propose a new approach to recover the compactness for a (PS)-sequence, and our approach is useful for many similar problems.


35J10 Schrödinger operator, Schrödinger equation
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI arXiv


[1] C. O. Alves, F. S. Gao, M. Squassinac, M. B. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations263, (2017), 3943-3988. · Zbl 1378.35113
[2] C. O. Alves, G. M. Figueiredo, M. B. Yang, Alves, Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity, Adv. Nonlinear Anal. 5, (2016), 331-345. · Zbl 1354.35029
[3] C. O. Alves and M. B. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations257, (2014), 4133-4164. · Zbl 1309.35036
[4] H. Berestycki and P. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal. 82, (1983), 313-345. · Zbl 0533.35029
[5] W. Y. Chen, J. C. Wei, S. S. Yan, Infinitely many solutions for the Schrödinger equations in ℝn with critical growth, J. Differential Equations82, (2012), 2425-2447. · Zbl 1235.35104
[6] S. T. Chen and X. H. Tang, Improved results for Klein-Gordon-Maxwell systems with general nonlinearity, Disc. Contin. Dyn. Syst. A38, (2018), 2333-2348. · Zbl 1398.35026
[7] S. T. Chen and X. H. Tang, Ground state solutions for generalized quasilinear Schrödinger equations with variable potentials and Berestycki-Lions nonlinearities, J. Math. Phys. 59, (2018), no. 081508, 1-18 · Zbl 1395.35171
[8] S. T. Chen, B. L. Zhang, X. H. Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal. (2018),
[9] S. Cingolani, S. Secchi, M. Squassina, Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A140, (2010), 973-1009. · Zbl 1215.35146
[10] Y. X. Guo, B. Li, J. C. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents in ℝ3, J. Differential Equations256, (2014), 3463-3495. · Zbl 1288.35232
[11] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28, (1997), 1633-1659. · Zbl 0877.35091
[12] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ℝN, Proc. Roy. Soc. Edinburgh Sect. A129, (1999), 787-809. · Zbl 0935.35044
[13] L. Jeanjean and K. Tanaka, A remark on least energy solutions in ℝN, Proc. Amer. Math. Soc. 131, (2003), 2399-2408. · Zbl 1094.35049
[14] L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on ℝN, Indiana Univ. Math. J. 54, (2005), 443-464. · Zbl 1143.35321
[15] L. Jeanjean and J. F. Toland, Bounded Palais-Smale mountain-pass sequences, C. R. Acad. Sci. Paris Sér. I Math. 327, (1998), 23-28. · Zbl 0996.47052
[16] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math. 57, (1976/77), 93-105. · Zbl 0369.35022
[17] X. Mingqi, D. V. Rădulescu, B. L. Zhang, A critical fractional Choquard-Kirchhoff problem with magnetic field, Commun. Contemp. Math. (2018), no. 1850004. · Zbl 1416.49012
[18] X. Mingqi, D. V. Rădulescu, B. L. Zhang, Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions, Nonlinearity31, (2018), 3228-3250. · Zbl 1393.35090
[19] I. M. Moroz, R. Penrose, P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity15, (1998), 2733-2742. · Zbl 0936.83037
[20] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal. 265, (2013), 153-184. · Zbl 1285.35048
[21] V. Moroz and J. Van Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equationsin exterior domains, J. Differential Equations254, (2013), 3089-3145. · Zbl 1266.35083
[22] V. Moroz and J. Van Schaftingen, Existence of groundstate for a class of nonlinear Choquard equations, T. Am. Math. Soc. 367, (2015), 6557-6579. · Zbl 1325.35052
[23] V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math. 17, (2015), no. 1550005, 1-12. · Zbl 1326.35109
[24] V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations52, (2015), 199-235. · Zbl 1309.35029
[25] V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl. 19, (2017), 773-813. · Zbl 1360.35252
[26] G. Molica Bisci and V. D. Rădulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calc. Var. Partial Differential Equations54, (2015), 2985-3008. · Zbl 1330.35495
[27] S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
[28] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43, (1992), 270-291. · Zbl 0763.35087
[29] D. Ruiz and J. Van Schaftingen, Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differential Equations264, (2018), 1231-1262. · Zbl 1377.35011
[30] A. Vincenzo, Zero mass case for a fractional Berestycki-Lions-type problem, Adv. Nonlinear Anal. 7, (2018), 365-374. · Zbl 1394.35542
[31] Y. H. Sato, M. Shibata, Existence of a positive solution for nonlinear Schrödinger equations with general nonlinearity, Adv. Nonlinear Anal. 3, (2014), 55-67.
[32] X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohožaev type for Schrödinger-Poisson problems with general potentials, Disc. Contin. Dyn. Syst. A37, (2017), 4973-5002. · Zbl 1371.35051
[33] X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohožaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Differential Equations56, (2017), no. 4, 1-25. · Zbl 1376.35056
[34] X. H. Tang and S. T. Chen, Singularly perturbed Choquard equations with nonlinearity satisfying Berestycki-Lions assumptions, 2019, arXiv:1903.10347
[35] X. H. Tang and X. Y. Lin, Existence of ground state solutions of Nehari-Pankov type to Schrödinger systems, Sci. China Math62, (2019), .
[36] X. H. Tang, X. Lin, J. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ, (2018), 1-15. . · Zbl 1414.35062
[37] J. C. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys. 50, (2009), no.1, 012905, 1-22. · Zbl 1189.81061
[38] L. P. Xu, H. B. Chen, Ground state solutions for Kirchhoff-type equations with a general nonlinearity in the critical growth, Adv. Nonlinear Anal. 7, (2018), 535-546. · Zbl 1404.35141
[39] M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston Inc., Boston, MA, 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.